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Abstract

Theoretical models argue that listeners’ perception of second language sounds is heavily influenced by their native language phonol-
ogy, a prediction borne out by behavioural studies. However, we lack quantitative models capable of making more precise predictions of
the way in which the first and second language sound systems interact. The current study introduces a computational modelling frame-
work that permits comparison of different second language learning strategies which vary both in the degree of first language influence as
well as in the manner in which second language input is combined with existing first language knowledge. Six different model variants
were evaluated by comparison with behavioural data on a task involving the identification of intervocalic consonants of Castilian Span-
ish by Mandarin Chinese listeners. All approaches demonstrated a similar pattern of rapid improvement with exposure to that observed
in listeners. However, approaches that made use of independent first and second language models made the best predictions. An
approach that excluded first language influence both predicted lower listener identification levels in the initial stages of learning and high-
er scores in later stages, demonstrating that first language experience helps to bootstrap second language sound learning but ultimately
hinders identification. However, modelling outcomes also demonstrate that no single approach can account for the identification patterns
for all consonants, suggesting that learners deploy different approaches to the learning of individual sounds.
� 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Acquiring the sounds of a new language as an adult is dif-
ferent in at least one crucial respect from the linguistic situa-
tion that confronts us as infants: as adults,we alreadypossess
a well-developed phonological system. Investigation of how
the first (L1) and second (L2) language sound systems inter-
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act to influence the development of phonetic competence in a
second language is an active area of study, and the degree to
which adult learners benefit – or do not – from prior experi-
ence remains an important issue both in broadening our
understanding of second language learning and in the study
of general phonological representations and processes.

Besides the age of acquisition, the influence of the first
language is probably the single strongest factor in non-na-
tive sound acquisition. Theoretical models (e.g., Kuhl,
1993; Best, 1995; Flege, 1995) agree that perceived similari-
ties between native and non-native phonetic categories play
a crucial role in non-native sound perception. Learners
may process non-native sounds in terms of their L1
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categories given sufficient similarity between the two in a
process variously known as ‘equivalence classification’
(Flege, 1995) or ‘perceptual assimilation’ (Best, 1995),
which can prevent category formation for non-native
sounds. Best and Tyler (2007) suggest that L2 learning is
a process of fine-tuning and possibly ‘re-phonologizing’,
in which learners might stretch or modify their existing
L1 categories to accommodate L2 perception (see also
Bundgaard-Nielsen et al., 2011).

While theoretical models have provided valuable
hypotheses and insights concerning the influence of the
L1 phonological system on the development of non-native
sound perception and production, what these models lack
is the ability to predict in a quantitative manner how the
established L1 system and the evolving L2 system interact.
For instance, it is difficult to answer questions about the
nature of the relationship between the amount of exposure
to second language sounds and the rate at which L2 catego-
ry identification improves.

Computational simulations provide a useful adjunct to
theoretical models, and have been used in studies of L1
sound acquisition to show how infants learn native vowel
categories and to simulate the perceptual magnet effect
(de Boer and Kuhl, 2003; Vallabha et al., 2007; Lake
et al., 2009; McMurray et al., 2009). Statistical pattern
recognition approaches have also been applied recently to
simulate human perceptual assimilation tasks in order to
measure cross-language category similarities directly from
the acoustic data, providing quantitative formal evaluation
of the predictions of theoretical models (Strange et al.,
2004; Morrison, 2009; Thomson et al., 2009; Gong et al.,
2010). Computational approaches have also been used in
studies of the development of L2 perception. For example,
in Escudero et al. (2007), machine learning and computa-
tional linguistic models were used to simulate and visualise
the evolution of learners’ L2 vowel spaces. Hidden Markov
modelling (HMM) techniques were adopted by Gong et al.
(2011) in a modelling study investigating the effect of differ-
ent ratios of L1 and L2 exposure in identifying second lan-
guage. These studies not only demonstrated the promise of
using computational approaches to model the L2 learning
process, but also highlighted a key advantage of simula-
tion, viz. the ability to contrast and evaluate competing
models while maintaining control over factors such as the
degree and type of exposure. However, simulation studies
to date have been somewhat limited in scope. Many exist-
ing models have been constructed using either synthetic
speech (Escudero et al., 2007) or simplified and abstract
speech parameters (e.g., F1/F2 values or VOTs) (de Boer
and Kuhl, 2003; Vallabha et al., 2007; Strange et al.,
2004; Thomson et al., 2009) while small subsets of vowels
or consonants have usually been chosen as the modelling
targets (de Boer and Kuhl, 2003; Vallabha et al., 2007;
Morrison, 2009; Escudero et al., 2007).

The current study addresses the issue of how L1 knowl-
edge interacts with L2 exposure at the outset of second lan-
guage learning. We do so by evaluating how closely a
number of computational models predict findings from a
recent study of non-native consonant identification
(Gong, 2013). In that study (reviewed in Section 2 below)
Chinese listeners with no experience in Spanish took part
in an intensive high-variability perceptual training pro-
gramme of the kind found to be effective in earlier studies
(e.g., Logan et al., 1991; Lively et al., 1993; Bradlow et al.,
1997). Listeners were required to identify Spanish conso-
nants drawn from the full consonant inventory, when pre-
sented in intervocalic context. Using Gong (2013) as the
behavioural reference, in the current study we apply com-
putational modelling to investigate the development of sec-
ond language learning when confronted by an extensive L2
sound inventory. Our models differ in the manner in which
speech material in the L1 and L2 interact during learning
and consonant recognition. These models use precisely
the same training data, in the same sequence, as made
available to listeners in the behavioural study. As such, lis-
teners and models had identical exposure to the consonants
of the target language during training. As in Gong et al.
(2011), HMMs were used to represent sound categories.
An initial HMM set was trained using Chinese data and
consonant categories, and subsequently retrained for Span-
ish consonant categories based on listeners’ assimilations of
Spanish sounds.

One model – BLEND – is motivated by the hypothesis
that it is the raw amount of L2 exposure that is the key
determinant of listeners’ identification of L2 sounds. BLEND

operates by adding in progressively larger quantities of L2
stimuli and re-learning HMM parameters ab initio. A sec-
ond model, ADAPT, is based on the idea that it is not just
quantity but the sequence of exposure to new sounds that
matters. Rather than re-training at each stage of learning,
HMM parameters are adapted using Bayesian speaker
adaptation techniques. A further model, SEPARATE, repre-
sents the hypothesis that learners of a new sound system
are capable of maintaining separate L1 and L2 representa-
tions and that they use only the latter to identify L2 speech
sounds. We additionally evaluate versions of each of the
BLEND, ADAPT and SEPARATE approaches in which HMMs
for the L1 are activated in parallel. These models –
PAR-BLEND PAR-ADAPT and PAR-SEPARATE – represent
L1/L2 interaction at the level of categories.

Section 2 reviews the behavioural study of Gong (2013)
and describes the Spanish and Chinese speech materials
used in the current study. Section 3 describes how listener
assimilation results inform the development of the initial
model set, while the six modelling approaches are explained
in Section 4. Simulation results are presented and com-
pared to listeners in Section 5.
2. Behavioural study

The stimuli and human baselines used in the current
study are described in Gong (2013). Here, we review the
tasks, speech materials, and outcomes of that study.
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2.1. Listeners

A cohort of 20 native Mandarin Chinese listeners (11
females and 9 males) aged between 20 and 23 (mean:
20.5 years) took part in an intensive seven-day perceptual
training regime. All listeners were from north China and
had a northern Mandarin dialect. In this dialect, the fea-
ture ‘‘retroflex” is important in distinguishing some affri-
cate and fricative contrasts (e.g., denti-alveolar /s/ and
retroflex post-alveolar /

R
̺/). All listeners were studying

medical courses and none had studied Spanish or any other
Romance language before, and no listener had lived out-
side China. An additional group of eight listeners served
as a control. They had a similar profile to those in the main
study and undertook only the pre- and mid-tests with a gap
of two days, but received no training in the interim.

2.2. Tasks

On days 1, 4 and 7, listeners identified Spanish conso-
nants in intervocalic context (VCVs) using an 18-alterna-
tive forced choice paradigm. The task and materials on
each of the three test days (which we will refer to as pre-
test, mid-test and post-test) were identical. A total of 360
VCVs were used during testing, composed of 10 examples
of both initially and finally-stressed tokens for each of 18
Spanish consonants.

On the remaining four days (days 2, 3, 5, 6) listeners
underwent perceptual training on VCV tokens that differed
from those used during the testing phases. Training ses-
sions had a similar format to the test sessions except that
participants received immediate feedback on incorrect
responses. For such responses, a button with the correct
answer was highlighted and activated, and listeners were
then required to listen to the stimulus exactly once before
continuing to the next token. Participants took part in 4
training sessions on each day. Each training session con-
tained 180 tokens, 10 for each of 18 Spanish consonants (-
five each for initial and final stress). Nine types of vowel
context were used in order to increase exposure to co-ar-
ticulatory variation. No token was repeated during the 16
training sessions, leading to a total exposure to 2880 differ-
ent tokens, 160 for each consonant.

In addition to the L2 consonant identification task, par-
ticipants also carried out a category assimilation test on
each of the test days. This task involved mapping Spanish
VCVs to Chinese consonant categories. As in the identifica-
tion test, a total of 360 Spanish VCVs were categorised
along with 48 Chinese VCV tokens which served as control
items. The results from the assimilation pre-test were used
in the production of the initial set of Spanish VCV models,
as described in Section 3 below.

2.3. Speech materials

Naturally-produced VCV sequences for all 324 combi-
nations of the 18 Spanish consonants /p, b, t, d, k, ɡ, ʧ,
f, h, s, x, m, n, ɲ, l, ɾ, r, j/ and vowels /a, i, u/, with initial
and final vowel stress, served as stimuli for the training and
test phases of the study. Sixteen native male Spanish talkers
produced the full VCV set. These talkers originated from
the Basque Country, in northern Spain. Like most north-
ern and central peninsular varieties, their accent has a
phonological contrast between the interdental fricative /
h/ vs. sibilant /s/. As is increasingly the case in Spanish,
these speakers do not produce the palatal lateral /k/ corre-
sponding to orthographic ‘‘ll”. Instead, there is a neutral-
ization between this phoneme and the palatal continuant.
Whether this continuant phoneme is an approximant, a
fricative, an affricate or even a plosive, is a much debated
topic (Quilis, 1997; Martı́nez-Celdrán et al., 2003;
Hualde, 2005; Fernández, 2007). All these realisations are
possible, depending on phonetic context, style and regional
variation. Material from 10 talkers was used for model
training while VCVs from the remaining 6 talkers were
used in model testing. Chinese control tokens for the
assimilation tests came from a VCV corpus collected for
an earlier English-Chinese mapping study (Gong et al.,
2010). The Chinese VCV corpus was also used in the cur-
rent study to train the initial set of Chinese models (see Sec-
tion 3). The Chinese corpus contains tokens for all 24
Chinese consonants /ph, p, th, t, kh, k, tsh, ts, ʧh ̺, ʧ ̺, ʨh,
ʨ, f, s,

R
̺, ɕ, x, m, n, N, ɻ ɹ, l, j, w/ in the same 9 vowel con-

texts as used for the Spanish corpus. Since lexical stress is
not a feature of Chinese, the corpus did not differentiate
the two stress types. The corpus contains speech material
provided by 17 native male speakers of Mandarin.
2.4. Results

Listener scores during training and testing are visualised
alongside those from the models in subsequent sections.
Fig. 2 depicts per-consonant identification rates prior to
training, while consonant confusions at the same point
are provided in the upper panel of Fig. 3. Identification
scores in the pre-test and after each session of training
are shown in Fig. 4.

Prior to training, mean identification performance was
46%, a level well above chance, demonstrating the role of
L1 experience in L2 consonant identification even for naı̈ve
learners. Learners exhibited extremely rapid improvement
in the early stages of training, reaching a rate of nearly
75% correct identification after 4 short training sessions,
illustrating a considerable capacity for the formation of
new L2 categories. By comparison, the identification rate
for the control group did not change significantly between
pre- and mid-test (44% vs 46%; p ¼ 0:18), confirming that
the improvement seen in the experimental group was due
to the feedback they received during the training phase.

The improvement was notably smaller for voiced plo-
sives. L2 acquisition of plosive VOT and, in the case of
voiced plosives, of their approximant (spirantized) realiza-
tions such as the ones in our corpus, has been reported to



Fig. 1. Visualisation of listener assimilation responses. The area of each
square is proportional to the number of assimilations of the Spanish
consonant to the Chinese category.
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be particularly problematic, at least for production by L1
English speakers (Dı́az-Campos, 2004; Dı́az-Campos,
2014; Zampini, 1994; Zampini, 2014) and L1 Chinese
speakers (Chen, 2007). Our results extend to perception
the finding that spirantized plosives are problematic for
these learners.

Subsequent sections describe model construction and
evaluation. In all cases, the speech material used for train-
ing and testing the models was precisely that used in the
behavioural study.

3. Initial models

3.1. HMM architecture

All models to be introduced in Section 4 are based on
continuous density HMMs, trained using the HTK toolkit
(Young et al., 2006) using 39-component vectors composed
of 12 mel-frequency cepstral coefficients plus energy, and
their first and second temporal derivatives, computed every
10 ms. Individual vowels and consonants are modelled as
3-state HMMs and combined during recognition into
VCVs. Within each state, a mixture of Gaussian distribu-
tions represents speech observations deemed to belong to
that state. A limit of 10 mixture components per state
was determined in pilot tests as the best tradeoff between
model accuracy and use of the available training data.

3.2. Mapping Mandarin Chinese to Spanish

An initial set of Chinese HMMs was constructed using
the procedure described above. However, in order to com-
pare models with listeners undertaking the L2 sound
categorisation task, it is necessary for the Chinese models
to provide responses in terms of Spanish sound labels.
Since the Chinese-Spanish sound mapping is not one-to-
one – indeed, the sizes of their consonant inventories differ
– satisfying this requirement is potentially problematic. For
Chinese listeners as a cohort the Chinese-Spanish mapping
is many-to-many: Spanish exemplars with the same conso-
nant label can map on to different L1 categories, and
tokens with different labels can map on to the same
category.

One possible solution is to map Chinese consonant
models to the closest Spanish label as determined, for
example, by the HMM which most frequently ‘assimilates’
to the Spanish sound (i.e., the model which produces the
highest recognition score for a given Spanish consonant,
as measured over a test corpus). Listener assimilations
from Gong (2013) are reproduced in Fig. 1. These demon-
strate, for example, that while Spanish /p/ is predominantly
categorised by native Chinese listeners as Chinese /p/,
Spanish /b/ also assimilates to Chinese /p/ and to a greater
extent Chinese /w/. Several drawbacks of the label map-
ping approach are evident from this figure. First, there
may be more than one Chinese target for a Spanish catego-
ry with similar assimilation frequencies – as is the case for
Spanish /b/ – yet once the single Chinese model has been
chosen, these other categories play no further role in the
modelling process. A second issue is that duplicate Chinese
models can be chosen for the initial Spanish-labelled model
set, due to the same Chinese sound being the most frequent
assimilation target for multiple Spanish categories. This is
the case for Chinese /l/, which is the most frequent
assimilation for Spanish /r/ and /ɾ/ as well as Spanish /l/.
Having the same initial model is problematic in subsequent
consonant identification simulations since several models
will share precisely the same fit.

Here, these problems are resolved using a different
approach, which we call ‘assimilation-based model
retraining’. First, according to the listener-derived
assimilation percentages from each individual Spanish
sound to different target Chinese categories, VCV tokens
in the same proportions are chosen at random from the-
se Chinese categories to form a training set for that
Spanish sound. Subsequently, a new HMM labelled with
the corresponding Spanish sound is built from this train-
ing set. For example, Spanish /s/ was assimilated to the
Chinese sounds /s,

R
̺, ɕ/ with assimilation percentages

53%, 41% and 6% respectively, so a new HMM labelled
as Spanish /s/ is trained on a mixture of data with 53%
from the Chinese /s/ category, 41% from Chinese /

R
̺/,

and 6% from Chinese /ɕ/. To ensure balanced exposure
across the different Spanish categories, the total number
of VCV tokens for each new HMM is fixed at a constant
value (set here to 120, which is the average number of
tokens across the Chinese categories). As a consequence
of assimilation-based model retraining, all individual
HMMs are unique and represent not just the single most
frequent assimilation target but the distribution of tar-
gets. Retrained models form the starting point for most
of the modelling strategies, and are referred to in subse-
quent sections as the ‘Initial Model’ (IM) set.
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3.3. Initial model set performance

As noted above, listeners identified around 46% of
Spanish consonants correctly prior to training. The initial
model set derived by assimilation-based model retraining
results in a somewhat higher identification rate of 53%.
Fig. 2 compares per-consonant identification scores of lis-
teners and the initial model set. Consonant confusion
matrices for listeners and the initial model set are provided
in Fig. 3.

Apart from the voiceless plosives, most of the conso-
nants have relatively similar identification rates in the
pre-test for listeners and the initial models. Listeners –
but not the initial models – almost universally mis-cate-
gorised the voiceless plosives as their voiced equivalents.
Other listener-model disparities can be seen for /h/ and /
n/. As shown by the confusion matrices prior to training
(Fig. 3), listeners largely mis-categorised /h/ as /s/ whereas
the model produced the more acoustically-based confusion
of /h/ and /f/. While listeners found /n/ unproblematic, the
initial model had difficulty in distinguishing it from /ɲ/. In
fact, due to the listener assimilations used in the initial
model construction procedure, the initial /n/ and /ɲ/ mod-
els were both trained on a large proportion of Chinese /n/
data and hence were similar at the outset, giving rise to
many mutual confusions in the pre-test.
Fig. 3. Visualisation of consonant confusions prior to training. Row
labels indicate stimuli while column labels indicate responses. Top: listener
confusions. Bottom: initial model confusions.
3.4. Interim discussion

Clearly, listeners are able to respond to L2 sounds in
terms of L1 categories, albeit with a greater or lesser degree
of confidence or goodness of fit. We argue that in order to
model category identification it is important to reflect these
biases in our models. However, our goal here is purely
pragmatic: we require a mechanism capable of providing
category judgements in the absence of L2 data. The way
in which behavioural assimilation data is used in construct-
ing the initial model set should not be understood as a
hypothesis about how listeners create new categories, a
process which is outside the scope of the current modelling
study.

Listeners’ mis-categorisation of Spanish voiceless plo-
sives as their voiced equivalents in the pre-test is likely to
be due to orthographic influences from Pinyin, a system
that most Chinese children learn in primary school to help
Fig. 2. Model-listener comparison of consonant identification r
them to remember the pronunciation of Chinese charac-
ters. The Pinyin system uses Roman letters to mark the
sounds. The letters ‘b’, ‘d’ and ‘g’ are the graphemes used
ates prior to training. Error bars indicate 1 standard error.
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in the Pinyin system to represent the Chinese voiceless
unaspirated counterparts of Spanish /p, t, k/. Orthographic
transfer is likely to account for their low rates of identifica-
tion. Here, the modelling technique of assimilation-based
retraining ensures that the acoustic properties of the corre-
sponding Spanish sounds are well represented. However,
the models are unable to take account of orthographic
transfer, leading to listener-model disparities for these
sounds.
4. Models of L2 consonant identification

Six alternative models were developed to explore the
role of L1 influence in early-stage L2 consonant identifica-
tion. In this section we motivate these models and detail
each approach. The differing use of speech data and models
during training and testing amongst the strategies is sum-
marised in Table 1.
4.1. BLEND

The BLEND model mixes different proportions of Chinese
and Spanish training data to simulate the exposure to L2
sounds available at different stages in the learning process.
For each Spanish category C at training session i, Spanish
data from all training sessions up to and including i for that
category is added into the (fixed) Chinese training data
used in assimilation-based model training to construct the
initial model for category C. This blended set of Spanish
and Chinese VCVs is then used to train the model for C

after session i.
For instance, as explained in Section 3.2, in the initial

model set the Spanish /s/ model is derived using 120 Chine-
se VCV tokens drawn in various proportions from the cate-
gories /s,

R
̺, ɕ/. At the end of the first training session, the

blended /s/ model is trained on the mixture of these 120
Chinese tokens plus the 10 Spanish /s/ tokens heard by lis-
teners during the first session. Similarly, in the second ses-
sion the original 120 Chinese tokens are joined by 20
Spanish /s/ exemplars, and in subsequent training stages
additional blocks of Spanish /s/ tokens are added to the
training data set used in the previous stages. The BLEND

modelling approach represents a possible learning mode
based on gradual merging of new L2 tokens with prior
Table 1
Model and data requirements for each of the modelling strategies. CH: Chinese
AMi, SPMi: BLEND, ADAPT and SEPARATE HMM set after training session i.

Strategy Session Source model Training data

BLEND 1 – CH+SP1

n – CH+SP1 . . .SPn

ADAPT 1 IM –
n AMn�1 –

SEPARATE 1 – SP1

n – SPn
L1 knowledge. As more L2 tokens are added, the influence
of the L1 is expected to be reduced.

4.2. ADAPT

The ADAPT approach is similar to BLEND but uses model
adaptation techniques developed for automatic speech
recognition to progressively modify the initial HMMs
using Spanish speech material available up to the given
training session. The key difference between the ADAPT

and BLEND approaches is that ADAPT maintains the sequen-
tial order in which additional data is used, while BLEND

retrains the models from scratch at each stage, removing
any sequential information. The ADAPT approach better
reflects a listener’s exposure and sequential learning, and
allows us to measure the importance of sequential ordering
effects (e.g., recency of experience) in identifying non-native
language sounds.

ADAPT uses the maximum a posteriori(MAP) approach.
MAP is a Bayesian speaker adaptation technique which
treats the existing HMM parameters as prior information
and uses a re-estimation procedure to find parameter val-
ues that maximize the model’s a posteriori probability of
generating the adaptation target data (Gauvain and Lee,
1991; Gauvain and Lee, 1994). MAP adaptation is imple-
mented in a cascaded fashion as follows. In each training
stage, the model trained at the previous stage is used as
the current model. The parameters of this model are then
modified based on the new block of Spanish speech mate-
rial used at the equivalent stage of listener training. MAP
is a supervised adaptation technique: since the Spanish
training material has category labels, adaptation for each
category is applied to the corresponding HMM.

Once again taking the /s/ model as an example, at the
end of first training session the parameters of the initial /
s/ model are modified to adapt to the 10 Spanish /s/ tokens
heard in the first session. In each subsequent training ses-
sion the parameters of the adapted /s/ model will be further
modified based on the data heard in that session.

4.3. The SEPARATE model

A further model – SEPARATE– was constructed using
only the Spanish speech material available at each point
in the training procedure. For example, the SEPARATE /s/
data; IM: initial HMM set; SPi: Spanish data from training session i; BMi,

Adaptation data Output/test model Test model (parallel)

– BM1 BM1 + IM
– BMn BMn + IM

SP1 AM1 AM1 + IM
SPn AMn AMn + IM

– SPM1 SPM1 + IM
– SPMn SPMn + IM
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model is initially learnt from the 10 Spanish tokens present-
ed in the first session. The second SEPARATE /s/ model is
trained on the 10 tokens from the first session plus the 10
tokens from the second session. In this way, at the end of
the 16th training session, the SEPARATE /s/ model is trained
on all 160 Spanish /s/ tokens used in the behavioural
experiment. This model serves to measure the extent to
which the Spanish data alone are sufficient to permit con-
sonant identification after each training session, and as
such represents the potential performance for a hypo-
thetical new language learner who is not subject to any
influence from Chinese L1 models, or, equivalently, is cap-
able of keeping non-L1 sounds apart from their internal L1
sound system. Additionally, the SEPARATE model enables us
to estimate the effects of data paucity during early stages of
exposure.

4.4. Parallel L1/L2 activation

The BLEND and ADAPT approaches model the interaction
of L1 and L2 speech data at an acoustic feature level, from
which a single HMM is built for each category. Thus, the
initial Chinese models are modified thoughout the simulat-
ed training programme and consequently the original L1
influence is progressively weakened. To explore the effect
of maintaining separate L1 models, parallel versions of
BLEND, ADAPT and SEPARATE – denoted PAR-BLEND, PAR-

ADAPT and PAR-SEPARATE – were constructed. Parallel mod-
els represent L1–L2 interaction at the categorical rather
than the acoustic level.

In practice, application of the parallel approach differs
from its counterpart non-parallel approach only in the test
phase. The initial model set is evaluated alongside the mod-
el sets created by the BLEND, ADAPT or SEPARATE approach-
es. Hence, for each Spanish consonant there are two
HMMs with the same consonant label. For example, in
the case of the PAR-SEPARATE strategy there is an HMM
labelled with category C from the SEPARATE model set
and another labelled with category C from the initial model
set. In the decision process, log likelihoods from these pairs
of models are summed, and the most likely category chosen
as the parallel model’s response.

5. Simulation results

After each training session, identification tests were car-
ried out using models trained under the different modelling
strategies, using precisely the same test data presented to
listeners. This section compares the six modelling
approaches outlined above with listener scores, both over-
all and for individual Spanish consonants.

5.1. Overall identification performance

The upper panel of Fig. 4 plots identification scores as
means over all 18 Spanish consonants through the 16
training sessions for listeners and for each of the six mod-
elling strategies. Scores in the pre-test using the initial mod-
el set are also plotted.

The improvement in identification scores as a result of
training observed in listeners is broadly reflected in the dif-
ferent modelling strategies, with a rapid increase over the
first 2–4 sessions followed by a more gradual increase.
All modelling strategies asymptoted at an identification
rate within 5 percentage points of that obtained by listen-
ers. The main differences between the modelling approach-
es can be seen in the detailed evolution of scores during
training. The lower panel of Fig. 4 shows the difference
between model and listener scores for each strategy. Both
ADAPT and PAR-ADAPT produce higher scores than listeners
throughout the entire training process, although they con-
verge to the behavioural data in the latter stages of train-
ing. The evolution of both BLEND and PAR-BLEND relative
to human listeners is more varied in the initial stages. In
the latter stages, from training session 10 onwards, the pat-
terns for BLEND and ADAPT and their parallel versions are
quite similar. Indeed, while differences exist, in the main
the parallel versions are quite similar to the non-parallel
counterparts for both of these modelling strategies.

This is not the case for the SEPARATE and PAR-SEPARATE

approaches, which show rather different patterns both
from each other and from the other strategies during the
training simulation. Unlike ADAPT and BLEND, the SEPA-

RATE model predicts substantially lower listener identifica-
tion scores in the very early stages, but predicts higher
scores from training session 5 onwards. The PAR-SEPARATE

approach shows more variability, but generally predicts
lower scores for the first half of the training period and
marginally higher scores thereafter. It is interesting to note
that the identification rate for models trained on the Span-
ish speech material available in the first training session
alone already reaches about 47%. While quite high, this fig-
ure is substantially lower than the 59% obtained by listen-
ers, suggesting that the latter group benefit from their L1
experience in recognising Spanish tokens in the early stages
of exposure. However, during later stages this same L1
experience appears to count against listeners since the pure
Spanish models out-perform listeners after a certain
amount of initial exposure.

To better appreciate the differences between the models,
Table 2 quantifies both the root mean square (RMS) and
the standard deviation of the difference scores across train-
ing sessions. The latter reflects how well the shape of the
performance versus training epoch curve matches that of
listeners. The PAR-BLEND model provides the best fit to
the overall distance while the PAR-ADAPT model provides
the best fit to the overall shape. The pure Spanish model
has the poorest fit for both metrics. Parallel versions always
out-perform their non-parallel counterparts. Incorporation
of parallel models provides the largest benefit for the
SEPARATE model, but has relatively little effect on BLEND

and ADAPT. This result probably reflects differences in the



40

45

50

55

60

65

70

75

80

85

90

C
or

re
ct

 id
en

tif
ic

at
io

n 
pe

rc
en

ta
ge

LISTENERS
BLEND
PAR-BLEND
ADAPT
PAR-ADAPT
SEPARATE
PAR-SEPARATE

−20

−15

−10

−5

0

5

10

15

20

pr
e

tr 
1

tr 
2

tr 
3

tr 
4

tr 
5

tr 
6

tr 
7

tr 
8

tr 
9

tr 
10

tr 
11

tr 
12

tr 
13

tr 
14

tr 
15

tr 
16

Li
st

en
er

−M
od

el
 d

iff
er

en
ce

s 
in

 p
er

ce
nt

ag
e 

po
in

ts

BLEND
PAR-BLEND
ADAPT
PAR-ADAPT
SEPARATE
PAR-SEPARATE

Fig. 4. Consonant identification scores as a function of training session for listeners and models. Scores for the initial models in the pre-test are also shown
(‘pre’). Top: absolute scores. Bottom: model-listener differences.

Table 2
Model-listener RMS distance and shape indices (percentage points).

Model BLEND PAR-BLEND ADAPT PAR-ADAPT SEPARATE PAR-SEPARATE

RMS 2.4 2.1 3.5 2.5 5.1 2.9
shape 1.8 1.6 1.5 1.3 4.5 3.0

24 J. Gong et al. / Speech Communication 69 (2015) 17–30
Chinese ‘exposure’ that the different models possess, as dis-
cussed below.

For presentational clarity in subsequent analyses of
individual consonants, we omit BLEND and ADAPT since
they performed less well than their parallel counterparts.
However, we continue to plot the SEPARATE approach since
it is significantly different from its parallel counterpart in
that SEPARATE is the only one of the six strategies which
exploits solely L2 data.

5.2. Individual consonant identification during testing

Fig. 5 presents a more detailed comparison of model
and listener scores at the mid- and post-test stages for each
individual consonant. Consonant confusion matrices corre-
sponding to the post-test for listeners and four models are
shown in Fig. 6.

By the time of the mid-test (upper panel of Fig. 5) many
models show an improved correspondence with listeners.
Apart from the sounds /p, h, ɾ/ one or more models are
within a few percentage points of listener identification
rates. However, no single model produces good predictions
of listener scores for all consonants. Indeed, for the four
models plotted in Fig. 5, model-listener correlations are
in the range [0.63–0.77]. This result raises the possibility
that different consonants are subject to different processes
best described by one or other of the models.

The outcome is broadly similar in the post-test (lower
panel of Fig. 5), showing some clear model-listener simila-
rities. For example, the voiced plosives /b, d, ɡ/ were



Fig. 5. Model-listener comparison of consonant identification rates at the mid-test (top) and post-test (bottom) stage. Error bars indicate 1 standard error.
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amongst the least accurately identified by listeners, prob-
ably due to the lenited character of these sounds in intervo-
calic positions which are quite different from Chinese
plosive categories. Listeners’ identifications of these
sounds, particularly in the pretest, show that they are
aware of their continuant nature. Indeed, although listen-
ers do confuse voiced plosives with their voiceless counter-
parts, there is a degree of dispersion in the identifications of
these voiced plosives which demonstrates listeners’ uncer-
tainty and results in non-plosive choices. For instance,
after training /d/ is still heard 28% of the time as a non-plo-
sive such as one of /h, l, ɾ/. Like the learners, our models
show much worse performance for voiced ‘‘plosives” than
for voiceless plosives, with a considerable amount of dis-
persion in the confusions. A noticeable difference is that lis-
teners’ main confusions are still the voiceless counterparts
of the plosives (Fig. 6), whereas for the models other
voiced plosives are chosen just as frequently, indicating a
greater weighting of the voice feature by the models. For
voiced plosives, all models over-predict identification rates
for /b/, while for the other two plosives there is a mixed
picture: PAR-BLEND is closest for /d, ɡ/ but the remaining
models suggest lower identification rates for /ɡ/. Similarly,
in the case of voiceless plosives, all models over-predict for
/b/ and under-predict for /t/. There are also some differ-
ences between models and listeners for voiceless plosives.
Even after training listeners continue to confuse them with
their voiced counterparts, whereas the models manage bet-
ter their voiceless feature, with confusions leaning towards
other voiceless plosives. Overall for the plosives the best fit
is provided by the PAR-BLEND model. Likewise, to a large
extent listeners’ confusion patterns were similar to those
of several models for the nasals /n, ɲ/ and the tap /ɾ/,
which was frequently confused with /l/.

Nevertheless, some notable differences between listeners
and many of the models are visible at the post-test stage.
Listeners were highly accurate in identifying the fricative
/f/ but all models reported /h/ for many tokens. On the
other hand, listeners confused /h/ with /s/ which, apart
from PAR-ADAPT, the models never did. All models with
L1 influence (i.e. apart from SEPARATE) reported /ɡ/ in
response to the trill /r/, a confusion never made by listen-
ers. Again, the finding that certain confusions are predicted
by different models lends support to the idea that indi-
vidual L2 sounds may be processed according to different
strategies.

5.3. The evolution of individual consonant identification

during training

Fig. 7 shows how identification rates change with
training day (aggregating training results from each set of
4 sessions) for individual Spanish consonants in listeners
and models. Ignoring initial disparities and absolute scores,
changes in the pattern of identification rate across training
sessions for 14 of the 18 Spanish consonants – viz. /p, t, d, k,
ɡ, ʧ, f, h, x, m, n, ɲ, r, j/ – are well-modelled by one or more
strategies, even though these consonants showed a diverse
range of individual patterns of improvement or otherwise.
For three of the remaining sounds – /b/, /s/ and /l/ – and
unlike all the models, listeners barely improved their
identification rates with training. For the category /ɾ/, mod-
els were unable to mimic the gradual improvement shown
by listeners. In some cases, particularly for the plosives /t,
d, k/ and the affricate /ʧ/, the SEPARATE model best matched
listeners’ pattern of improvement over training sessions.
For the nasal sounds the closest fit was produced by
PAR-ADAPT.

6. Discussion

6.1. L1 influence

Theoretical models such as PAM (Best, 1995), SLM
(Flege, 1995) and NLM (Kuhl, 1993) suggest that L1 influ-
ences play a critical role in non-native sound perception, a
claim that is clearly supported by several outcomes of the
current modelling study.



Fig. 6. Consonant confusions in the post-test. Each row depicts responses to the sound labelled on the y-axis.
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Fig. 7. Model and listener identification rates at each stage of training for individual Spanish consonants. Pre refers to the pre-test scores obtained using
the initial models. For clarity, results from the four training sessions on each day are displayed as daily averages (d1, d2, d3, d4).
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First, the evolution of consonant identification with
supervised exposure (Fig. 4) demonstrates that the SEPA-

RATE model – trained solely on Spanish data – under-pre-
dicts human listener scores by around 10 percentage
points in the early training stages but then quickly catches
up and subsequently over-predicts in the latter stages. This
indicates a beneficial effect of prior L1 experience (Flege,
1987, 1995; Iverson et al., 2003; Oh et al., 2011), presum-
ably exploiting acoustic similarities between Chinese and
Spanish consonants to identify L2 consonants at levels well
above chance. It also suggests a negative subsequent effect
of L1 knowledge, perhaps due to the existence of compet-
ing similar sounds in the phonological representations of
the two languages. This result is consistent with the finding
of Aoyama et al. (2004) that adult Japanese speakers exhi-
bit an initial advantage over Japanese children in dis-
criminating English /r/-/l/ and /r/-/w/, but the latter
group out-perform adults in subsequent stages of acquisi-
tion. A similar initial adult advantage is reported in Oh
et al. (2011). Aoyama et al. (2004) suggested that the
advantage for adult Japanese listeners might originate in
their previous English learning experience, which the
Japanese children lacked. It can also be argued that adults’
mature L1 phonological systems help them in perceiving
sounds that are similar to L1 categories in a non-native lan-
guage (Oh et al., 2011), since children – with their less
mature but more flexible phonological systems – have been
found to be less likely than adults to assimilate non-native
sounds to a single native category (Baker et al., 2008).
A second way in which L1 influence is apparent comes
from differences in the use of training data in the modelling
strategies. In the BLEND strategy, models are trained on all
the available data (both Chinese and Spanish) at each
stage, allowing the model to retain all the exposure from
previous learning stages, resulting in an L1 influence that
is essentially fixed throughout the training process. The
ADAPT strategy, on the other hand, permits new L2 data
to incrementally modify the initial pure L1 models. Here,
it is possible to argue that L1 influence is more rapidly sup-
pressed under the weight of L2 data. Certainly, the ADAPT

model is more prone to over-predicting listener data than
the BLEND approach, although the degree of over-predic-
tion reduces with L2 exposure to levels similar to those seen
for the BLEND method, suggesting that both techniques end
up with models that have a similar degree of L1 influence.

Third, permitting the initial L1-dominated models to
operate in parallel with the evolving L2 models in all cases
led to better predictions of listener identification scores.
The largest improvements were for the PAR-SEPARATE mod-
el, followed by the PAR-ADAPT strategy, and with relatively
little effect for the PAR-BLEND case. This ranking of gains
with the use of parallel models is consistent with the impor-
tance of L1 influence, since those models with least L1
influence led to the largest gains when the initial models
were available. Further, the generally better fit provided
by the parallel models over their non-parallel counterparts
suggests that learners’ L1 and L2 sound systems are acti-
vated simultaneously and cooperate together to influence



28 J. Gong et al. / Speech Communication 69 (2015) 17–30
perceptual decisions during L2 perception. In fact, evidence
exists that a bilingual’s L1 and L2 systems are activated at
the same time during low level (e.g., phonetic) language
processing (Marian et al., 2003). Theoretical models such
as SLM postulate that a learner’s L1 and L2 categories
are situated in a common space and interact with each
other constantly (Flege, 1995; Flege et al., 2003), consistent
with our simulation results.

6.2. Rapid learning

A key finding of the current study is the ability to simu-
late listeners’ rapid learning, especially for the ADAPT mod-
elling strategy. Previous studies have demonstrated that
listeners can modify their existing L1 categories to adapt
to ambiguous speech after a short period of exposure
(Norris et al., 2003). Rapid adaptations to accented speech
or different speakers have also been reported in studies
such as Clarke and Garrett (2004), Bradlow and Bent
(2008) and Dahan et al. (2008). In fact, rapid learning of
non-native sound categories is a feature of many phonetic
auditory training studies (Logan et al., 1991; Wang et al.,
1999; Lambacher et al., 2005; Nishi and Kewley-Port,
2007).

6.3. Consonant- and listener-specific L2 acquisition

strategies

The modelling outcomes of the current study provide
clear support for the idea that the manner in which listeners
make use of L2 speech input for their evolving sound sys-
tem is determined by the specific relationship between each
L2 sound and the L1 sound system, as is implied by the
dominant L2 speech acquisition models mentioned at the
start of this section. Different modelling strategies in many
cases resulted in distinct predictions of the pattern of con-
sonant identification as a function of training. We give two
contrasting examples to illustrate this point. Consistent
with SLM, Chinese listeners are likely to create a new
category for the Spanish trill /r/, being dissimilar to all Chi-
nese consonants and also not confusable with other Span-
ish sounds. As a consequence, all the models make similar
predictions, suggesting a small L1 influence. However,
Spanish /h/ – even though it too could be seen as a new
sound for Chinese listeners – is relatively close acoustically
to Chinese /f/ and, in terms of formant transitions, to /s/
(Johnson, 2003). In this case, the creation of a new catego-
ry (simulated by the SEPARATE model) would predict iden-
tification rates higher than those actually observed.
Instead, incorporating L1 influence via the parallel models
produces a closer match to listeners’ identification scores
throughout training.

Different individuals may also use differing strategies
when faced with non-native sounds, or when placed in dif-
ferent contexts. The alternative models described here
might then reflect different strategies and environments.
For example, the parallel versions of the models assume
an intact L1 system and might be considered to mirror
adult L2 learning in a foreign language context while those
involving some form of blending of data may be applicable
in immersion settings. Likewise, ADAPT seems more repre-
sentative of learning with a pre-established L1 system while
BLEND reflects a situation where more than one language is
present, and in differing degrees, in the environment during
early phases of learning.

6.4. Limitations

The current study demonstrates what can be achieved
using a powerful statistical learning framework to exploit
precisely the same L2 data as that heard by listeners. Nev-
ertheless, the modelling approach has a number of limita-
tions. First, the representation of speech in terms of mel-
frequency cepstral coefficients and their first and second
derivatives, while to some extent validated for automatic
speech recognition, differs from that believed to underlie
human perception. The use of speech parameters derived
from models of the auditory system remains a challenging
task, not least due to the need for a ‘back-end’ recognition
architecture well-matched to auditory forms of
representation.

Second, the current study is limited to an analysis of the
macroscopic features present in model responses, examin-
ing the nature of models’ improvement in consonant iden-
tification over training sessions. Further predictions are
possible at the level of individual consonant confusions.
However, there is clear evidence of orthographic influence
at this level, and extensions to the model to cater for the
influence of prior experience with the written form are
required before an adequate account of individual confu-
sions can be constructed.

The study also exposes the need for initial models with a
closer match to listeners’ responses, a deficit that can be
interpreted as a lack of good assimilation models.

Finally, the data and results we present are specific to
the language pairing (L1: Mandarin; L2: Castillian Span-
ish) and to consonant learning in a specific context, namely
intensive ab initio training. Nevertheless, we believe that the
modelling approach provides a methodological framework
for evaluating other pairings and learning contexts, and
further permits the assessment of future progress in over-
coming limitations of existing models.

7. Conclusions

First language influence and second language input play
a dominant role in theoretical models of how listeners pro-
cess second language sounds. The current study used com-
putational modelling techniques to explore different
assumptions about the detailed processes involved in the
acquisition of intervocalic consonants in an unfamiliar lan-
guage. The outcomes of the study suggest that simulations,
when used alongside tightly-controlled listener studies
using identical inputs, can be used to test theoretical mod-
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els of the role of first language phonology in second lan-
guage acquisition and additionally to make quantitative
predictions at the level of individual sounds of how well
alternative models account for behavioural observations.
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