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Abstract

Robust speech recognition in everyday conditions requires the solution to a number of challenging problems, not least
the ability to handle multiple sound sources. The specific case of speech recognition in the presence of a competing talker
has been studied for several decades, resulting in a number of quite distinct algorithmic solutions whose focus ranges from
modeling both target and competing speech to speech separation using auditory grouping principles. The purpose of the
monaural speech separation and recognition challenge was to permit a large-scale comparison of techniques for the com-
peting talker problem. The task was to identify keywords in sentences spoken by a target talker when mixed into a single
channel with a background talker speaking similar sentences. Ten independent sets of results were contributed, alongside a
baseline recognition system. Performance was evaluated using common training and test data and common metrics. Lis-
teners’ performance in the same task was also measured. This paper describes the challenge problem, compares the per-
formance of the contributed algorithms, and discusses the factors which distinguish the systems. One highlight of the
comparison was the finding that several systems achieved near-human performance in some conditions, and one out-per-
formed listeners overall.
� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Speech recognition by machines in noisy conditions remains an important open problem. Human listeners
possess great flexibility in responding to a wide range of acoustic backgrounds and distortions encountered in
everyday situations (Assmann and Summerfield, 2004). From the presence of a relatively stationary noise
source such as a car engine to the highly time-varying intrusions produced by one or more background talkers,
listeners are generally able to communicate successfully. Understanding the basis for robust human
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performance is important for technological advances in areas such as automatic speech recognition (Gong,
1995) and cochlear speech processors (Dau et al., 2008).

It is well known that human listeners tend to perceive separated ‘objects’ when listening to an acoustic mix-
ture of sources (Bregman, 1990; Darwin and Carlyon, 1995; Divenyi, 2004). This motivates a source-separa-
tion approach for machine listeners. The problem of separating and recognizing speech is particularly
interesting because it admits a wide variety of very different solution techniques including those based on
source independence (e.g. Comon, 1994; Bell and Sejnowski, 1995; Parra and Spence, 2000; Makino et al.,
2007), computational auditory scene analysis (e.g. Weintraub, 1986; Ellis, 1996; Wang and Brown, 2006), sig-
nal-processing-based speech enhancement (e.g. Benesty et al., 2005; Loizou, 2007) and model-combination
(e.g. Varga and Moore, 1990; Gales and Young, 1996). However, until recently, no large-scale global compar-
ison had been undertaken, making it difficult to judge which approaches are worth pursuing and why.

To address this issue, a coordinated speech separation and recognition ‘challenge’ was initiated in 2006
(Cooke and Lee, 2006). The task for this first challenge was chosen to be non-trivial but at the same time fea-
sible for a range of algorithmic approaches. The goal was to recognize certain keywords in simple sentences
produced by one talker when mixed into a single channel with another sentence containing similar material.
This problem is not a ‘‘real-world” task, in which, for instance, speech is modified in the presence of noise,
spoken communication is carried out against a realistic background, rather than one consisting of a single
talker emitting highly-similar material, and listeners use binaural cues to help separate and identify the speech
of the interlocutor. However, the problem for this first challenge attempt was deliberately constrained in order
to provide a best-case scenario for an already difficult problem, since a failure to produce good performance
on the constrained task would almost certainly lead to severe problems on more realistic ones. The constrained
task also allowed for direct comparison of algorithms and listener performance.

The first outputs of the challenge were disseminated at a special session of Interspeech’06 which took place
in Pittsburgh, USA. Nine groups presented results on the task (Barker et al., 2006; Deshmukh and Espy-Wil-
son, 2006; Every and Jackson, 2006; Han et al., 2006; Kristjansson et al., 2006; Ming et al., 2006; Virtanen,
2006; Srinivasan et al., 2006; Schmidt and Olsson, 2006). Revised and extended versions of some of these,
together with new contributions, make up the current issue.

Section 2 describes the challenge task, the speech materials distributed to participants, and the scoring pro-
cedure. Results obtained by listeners on the same problem are reviewed in Section 3, while Section 4 describes
the performance of a baseline recognizer. The algorithmic approaches adopted by participants are outlined
and their results compared in Section 5, followed by a discussion of the salient differences between the
techniques.

2. The challenge problem

2.1. Task

The challenge problem was to recognize keywords from simple target sentences when presented with a
simultaneous masker sentence having a very similar structure. Sentences were recorded separately and mixed
additively into a single channel at a range of target-to-masker ratios (TMRs) ranging from +6 dB to �9 dB.

Although the task is not particularly representative of the problems faced in everyday speech perception, it
was chosen for the challenge for several reasons. The identification of speech in two-talker conditions from a
single microphone is a difficult problem for both listeners and algorithms. While progress has been made on
speech recognition in stationary noise, competing speech material provides a highly non-stationary and lin-
guistically-confusing background. In this regard, it is interesting to note that human listeners much prefer
non-stationary backgrounds, performing at a significantly lower level when the background is stationary
(Bronkhorst and Plomp, 1992; Simpson and Cooke, 2005). Second, behavioural data for this task was already
available (Cooke et al., 2008), enabling human-algorithm comparisons. Further, the task focuses on the lower
levels of speech processing, making few demands on higher-level linguistic information since all utterances are
syntactically, semantically and pragmatically equal, removing one source of variation from human–machine
comparisons. Finally, the task employs a simple sentence structure and a relatively small but easily confusable
vocabulary, removing the requirement for a large-scale automatic speech recognition infrastructure, and
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enabling a wider range of participants to contribute algorithms which focus on source separation rather than
recognition.
2.2. Speech material

All test and training material was drawn from the GRID corpus (Cooke et al., 2006). GRID sentences con-
form to the syntax
ð$command $colour $prep $letter $number $codaÞ

with word alternatives given by
$command ¼ bin j lay j place j set;

$colour ¼ blue j green j red j white;

$prep ¼ at j by j in j with;

$letter ¼ A j B j C j ::: j U j V j X j Y j Z;

$number ¼ zero j one j two ::: seven j eight j nine;

$coda ¼ again j now j please j soon;
The letter W was not used since it is the only multi-syllabic spoken letter of English.
The 34 talkers (18 male, 16 female) in the GRID corpus produced a different set of 1000 sentences each,

leading to a total of 34,000 unique utterances. All speech material was sampled at 25 kHz and endpointed
to remove leading and trailing silence. A 17,000 sentence training set was created by random selection of
500 utterances from each of the 34 talkers. Test sets were drawn from the remaining 17,000 utterances. Thus,
the test and training set contained the same closed set of 34 talkers.

Seven test sets were created, one clean, the rest composed of sentence pairs added at 6 TMRs (+6, +3, 0,
�3, �6, �9 dB). Sentences were paired to be approximately equal in duration. The clean set was produced to
enable participants to report baseline recognition performance if they were using something other than the
default recognizer provided by the organisers (see Section 4). Each of the 6 two-talker test sets contained
600 utterances pairs. Within each test set, roughly equal numbers of utterance pairs came from speakers of
different genders (DG), the same gender but different individuals (SG) and the same talker (ST). These TMRs
and speaker-pairing conditions were chosen on the basis of earlier two-talker experiments with listeners (Brun-
gart et al., 2001) which demonstrated interesting non-monotonic identification rates as a function of TMR due
to the differing availability of cues for speech segregation.

In each sentence pair, the colour word of the target utterance was always ‘white’, while the colour of the
masking utterance was never ‘white’. This allowed ‘white’ to act as a label to distinguish target and masker
for listeners and algorithms. The task was to report both the letter and digit keywords spoken by the target
talker. The target letter/digit pair was always different from the masker letter/digit pair, but other words in the
sentence, such as the coda, were allowed to coincide.

In the distributed test sets, filenames indicated the words spoken by target and masker talkers as well as
target and masker talker identifiers. For example, the filename ‘t4_bwba3p_m9_sgbl4p’ denotes the target sen-
tence ‘bin white by A 3 please’ spoken by talker 4 mixed with the sentence ‘set green by L 4 please’ spoken by
the masking talker, talker 9. Test sets were distributed grouped into directories by TMR. Fig. 1 shows audi-
tory spectrograms for this example, mixed at a TMR of 0 dB.

The clean test set consisted of the target utterances used in the two-talker conditions. To create the two-talker
mixtures, the level of the masker was varied to produce the desired token-wise TMR. Consequently, it was pos-
sible for participants to recover the clean masker signal simply by subtracting the clean signal from the mixture.
This gave participants access to undistorted target and masker signals. Of course, participants were not allowed
to use the clean signals or prior information about talker identities or TMRs when reporting their main results.
However, participants could use this information to better understand the behaviour of their techniques in var-
ious idealised conditions. For example, some participants reported auxilliary results based on having exact prior
knowledge of talker identities in order to assess the consequences of errors in talker identification.



Target (female talker): "bin white by A 3 please"

Masker (male talker): "set green by I 4 please"

Additive mix of target and masker at 0 dB TMR
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Fig. 1. Auditory spectrograms for target (top), masker (middle) and their mix (lower) at 0 dB target-to-masker ratio. Auditory
spectrograms were produced by filtering the signal using a bank of 200 gammatone filters with centre frequencies spaced on an ERB-rate
scale from 50 to 8000 Hz, then sampling the low-pass filtered Hilbert envelope at the output of each filter at 5 ms intervals.
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Participants were allowed to make use of the constraint that the talkers in the training set were the same as
those in the test mixtures, and that they belonged to a closed set.

2.3. Scoring procedure

For each two-sentence mixture, participants’ algorithms estimated the most likely letter and digit spoken by
the talker who uttered the keyword ‘white’. Each mixture was then given a score of 0, 1 or 2 keywords correct.
Participants reported the overall percentage keywords correct in each condition. In addition, they reported
percentage correct scores for the three subconditions of same talker, same gender, and different gender. A
script was provided to generate these measures. In addition, some participants reported speaker identification
scores.

3. Listener results

As part of a separate study on native versus non-native sentence separation (Cooke et al., 2008), behav-
ioural data for the conditions of the challenge were collected. Eighteen native English listeners with normal
hearing identified the letter and digit for the target talker in a block of 100 mixtures for each TMR. Listeners
were tested individually in an IAC single-walled acoustically-isolated booth using Sennheiser HD250 head-
phones at the University of Sheffield. Stimulus presentation and response collection was under computer con-
trol. Listeners were familiarized with the stimuli and the task by identifying an independent practice set of 60
sentences in quiet prior to the main set. Condition ordering was randomised across listeners and within each
block the ‘same talker’, ‘same gender’ and ‘different gender’ utterance pairings were mixed. To prevent listen-
ers from using absolute level as a cue to the target utterance, presentation level was randomly roved over a 9.5
dB range from stimulus to stimulus. Note that test sets for the algorithmic approaches did not include level
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variation, and several contributed systems may have benefitted from the constant level of the target utterance
(see Section 6.7).

Listener results are shown in Fig. 2 as a function of TMR. The pattern of results is comparable to that
found by Brungart et al. (2001) who used sentence pairs with a similar structure and in the same talker-pairing
conditions. Listeners had least difficulty in identifying target keywords when the masking talker was of a dif-
ferent gender, and had most difficulty when the same talker was used for target and masker. The strongly non-
monotonic pattern as a function of TMR in the ‘same talker’ and ‘same gender’ conditions was also found by
Brungart, and is thought to demonstrate the beneficial effect of level differences between target and masker in
helping to assign keywords to the target speaker. In the ‘different gender’ case, other cues are sufficiently
strong to render level differences unnecessary.

In general, listeners presumably make use of differences in the talkers’ vocal characteristics, grammar, and
amplitude to infer the association between the keyword and the letter and digit. However in the same talker
condition, with near-zero TMR, these cues are not present. In addition, in the challenge task grammar, the
distribution of the words in a given position does not depend on the previous words. This helps explain
why listener scores dropped to 52% at �3 dB in the same talker condition, despite the fact that listeners gen-
erally have little problem hearing keywords from both target and masker sentences (Brungart et al., 2006;
Cooke et al., 2008). This score is not much above what would be expected if listeners recognize the words
of both talkers correctly, and randomly guess which ones belong to the target utterance.

4. Baseline and reference recognition system

A baseline/reference speech recognizer was constructed for the task. The recognizer served a number of
purposes. When fed with utterance pairs, it enabled the estimation of lower-bound performance for the task.
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Fig. 2. Listener and baseline recogniser results on the two-talker datasets. For listeners, error bars indicate ±1 standard error.
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In addition, it provided those participants who were unable to develop their own recognition architecture with
a default recognizer. Finally, those participants whose algorithms led to an output in the form of a time-
domain, enhanced signal, were able to use the recognizer directly to evaluate the quality of the estimated
speech signal. In fact, the entire process from a set of enhanced waveforms to overall scores in each condition
was automated, allowing groups to focus on signal separation rather than speech recognition. Use of the base-
line/reference recognizer was optional since some algorithms performed separation and recognition in the
same process.

The baseline recognizer was constructed using HTK version 3.1 (Odell et al., 1995). Waveforms were
parameterised into standard 39-dimensional Mel frequency cepstral coefficients (MFCCs), i.e. 12 Mel-cepstral
coefficients and the logarithmic frame energy plus the corresponding delta and acceleration coefficients
(MFCC_E_D_A). The 51 words required to support GRID utterances were modelled as whole-word hidden

Markov models (HMMs) with a left-to-right model topology, with no skips over states and 32 Gaussian mix-
tures per state and diagonal covariance matrices. The number of states for each word was based on two states
per phoneme: the spoken letters, ‘at’, ‘by’ and ‘in’ used 4-state models while all remaining words employed 6-
state models apart from ‘again’ and ‘zero’ (8 states) and ‘seven’ (10 states).

Baseline recognition results are shown in Fig. 2. Listener performance far exceeds that of the baseline rec-
ognizer in most conditions by a large margin. For example, in the different gender condition at a TMR of
�9 dB, the difference is 71 percentage points. This is not surprising since the recognizer has no basis on which
to select the target utterance. It is interesting to note, however, that the difference reaches its minimum (17
percentage points) in the same talker condition at 0 and 3 dB. The baseline recognizer performance at these
TMRs is well above chance. This is a clear indication that fragments of letter and digit words from the masker
and target utterances were sufficiently ‘audible’ to allow a recognizer which is unable to perform any kind of
speech separation to nevertheless identify correctly one or other keyword on most occasions.

The pattern of performance with TMR was quite different for the listeners and baseline recognition system.
While listeners displayed a non-monotonic pattern, the recognizer suffered a continual degradation as the mas-
ker level increased relative to the target. As mentioned earlier, listeners can exploit a level difference cue to
improve performance at negative TMRs in spite of increasing amounts of energetic masking, while the recog-
nizer is most likely to respond to the energetically-dominant utterance, a ‘strategy’ which helps for positive
TMRs but causes errors at negative TMRs. A further listener-baseline difference is revealed by the ranking
of the three speaker pairing subconditions. Listeners performed best in the different gender case and worst
when the same talker was used for each sentence in the pair. The baseline recognizer worked best for the same
talker condition for TMRs 0–6 dB and performed least well in the different gender condition at these TMRs.
This pattern was reversed for the negative TMRs.
Table 1
Overall word error rate (%) of the ASR systems that were entered into the Pascal 2006 speech separation challenge.

System Approach Accuracy (%)

Hershey et al. (2010) Model-based, joint decoding 78.4
Human listeners Listening 77.7
Virtanen (2006)a Model-based, alternating decoding 65.8
Barker et al. (2010) CASA, missing features 63.8
Ming et al. (2010) Model-based, missing features 58.4
Schmidt and Olsson (2006)a Non-neg. matrix factorization 50.2
Weiss and Ellis (2010) Model-based, joint decoding 48.0
Li et al. (2010) Model-based, reconstruction 47.7
Shao et al. (2010) CASA, missing features 45.5
Baseline recognizer HTK recognizer, no enhancement 33.4
Deshmukh and Espy-Wilson (2006)a Phase opponency enhancement 31.6
Every and Jackson (2006)a Pitch-based enhancement 23.3
Chance Guessing 7.0

a Not published in this issue.
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5. Results

Table 1 summarizes the overall performance of the systems in this issue, along with some others that
addressed the same problem, but were published elsewhere. The accuracy of human listeners on the task is
also reported, as is the basic approach of each system. For systems published in this issue, the performance
on each of the sub-tasks is plotted in Fig. 3 as a function of target to masker ratio.

Overall, all systems described in the current issue performed significantly above the baseline. However,
there was a great deal of variation in performance across systems, ranging from 20 percentage points at the
most favourable TMR to around 50 percentage points in the least favourable condition. Three systems (Weiss
and Ellis, 2010; Li et al., 2010; Shao et al., 2010) fell into a relatively narrow performance range but three
others scored at a higher level. Notably, the system of Hershey et al. (2010) outperformed all others across
the range of TMRs, and beat listeners at intermediate TMRs. This advantage over listeners was largely based
on a significantly higher score in the same gender condition. In a subset of (condition, TMR) pairings, the
performance of the Barker et al. (2010) system was indistinguishable from listeners. At the extreme TMRs
where the target speaker was at its most or least dominant, listeners outperformed all contributed algorithms
overall. When compared against the best system, the listener advantage was largely due to superior perfor-
mance in the same talker condition.

The characteristic non-monotonic shape of the performance-TMR function for listeners was not echoed at
the level of overall scores by any of the algorithms. However, two systems (Hershey et al., 2010; Barker et al.,
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Fig. 3. Recognition results on the two-talker data sets for all systems published in this issue.
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2010) demonstrated similar non-monotonicity in the same talker condition, suggesting that they were able to
use level differences between target and masking talkers to improve performance even when the target talker
was the weaker of the two.

6. Discussion

The monaural speech separation and recognition problem has been approached in these works in a variety
of ways. At the broadest level, contributed systems differed according to the assumptions and constraints of
the task that were taken into account. In general one can expect a trade-off between the performance on the
challenge task, and the applicability of a system to other less constrained scenarios as a function of the number
of task constraints that were used. Systems ranged from those that took advantage of few constraints other
than the fact that the target is a human voice, to those that took advantage of almost every available con-
straint, from the closed speaker set to the known task grammar for both speakers. Thus it is useful to look
at the approaches in terms of the assumptions and strategies they used.

6.1. Model-based versus CASA approaches

The most significant difference in approach is between the model-based and the computational auditory

scene analysis (CASA) approaches. In the model-based approaches, such as Hershey et al. (2010), Virtanen
(2006), Li et al. (2010), Ming et al. (2010), Weiss and Ellis (2010), top-down generative models are used to cap-
ture the statistics of features of isolated signals, as well as the effect on the features of combining two signals.
Inference then seeks the two speech signals that are most likely given the observed mixture. The decomposition
of the spectrogram (or other time-frequency representation) into its constituent sources emerges as a by-prod-
uct of this inference.

In CASA, (Barker et al., 2010; Shao et al., 2010) the approach is bottom-up: segmentation and grouping
rules operate on low-level features to determine which regions of a spectrogram belong to the same source.
Grouping cues include common pitch, common onset, common amplitude modulation, temporal continuity,
and so on (Wang and Brown, 2006). Rather than segmenting the two sources completely, however, the signal
is typically divided into local regions, and then passed on to a model-based system which disambiguates the
global segmentation. This involves an assumption that there are relatively large regions of the spectrogram
that are dominated by one or another source. In contrast, model-based approaches typically do not make
any assumptions about the regions over which one signal may dominate another, other than implicitly by
choosing a spectrogram with a particular frequency or time resolution. Many model-based approaches, more-
over, explicitly model how the sources interact to better represent and separate mixed features that are not
dominated by a single source, as described in Section 6.3.

The CASA approach has the advantage that it may generalize to many different types of signals. However,
it also has the disadvantage that the grouping rules are not usually trained on data (see Bach and Jordan, 2006
for work in this direction). In cases where much is known about the signals, such as in the speech separation
scenario, it is easier to incorporate that information into a model-based framework than in a CASA
framework.

6.2. Speech separation versus mask inference

Another important distinction is between systems that reconstruct the speech signals or features for use in a
standard recognizer, and those that estimate the reliability of different areas of the original spectrogram for use
in a specialized missing-feature recognizer (Cooke et al., 2001). A related approach, known as uncertainty

decoding, involves reconstructing speech features along with an estimate of their uncertainty, and taking this
into account when doing recognition (Droppo et al., 2002). All of these methods suffer from the mismatch
between the feature domains that are useful for speech separation and those that are useful for isolated speech
recognition, although each has a different solution to this problem.

In reconstruction-based methods the audio signal of each speaker is estimated and then passed to a recog-
nizer (Hershey et al., 2010; Virtanen, 2006; Weiss and Ellis, 2010; Li et al., 2010; Ming et al., 2010). In these
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methods, different models can be used for separation and recognition. Speech recognition systems typically use
full language models or grammars, model multiple frames at a time, and model in a transformed domain
(MFCCs) that corresponds to using full covariances in the spectral domain. The full covariances in the spec-
tral domain are particularly difficult to deal with since signal combination models operate in the spectral
domain. Instead, separation systems often make use of single-frame models with diagonal covariances in
the spectrum. In addition, experiments can be done using simplified dynamics for separation, instead of the
full grammar used for recognition. The differences in features are important: Hershey et al. (2010) report that
even when the separation model has the full task grammar for both speakers, and hence performs recognition
in the course of reconstruction, the best result is obtained by using it for reconstruction and passing the result
to a single-speaker recognition system. A drawback of reconstruction is that using a point estimate of the sig-
nal disregards any information we have about the reliability or uncertainty of different parts of the signal.
Note however that in the process of reconstruction, the model-based approaches implicitly consider all mask-
ing functions allowed by the model.

Missing feature approaches in general are even more flexible, in the sense that only a masking function need
be inferred prior to single-speaker recognition. The recognizer then integrates out features labeled as masked
or unreliable. In Barker et al. (2010), rather than passing a single masking function to the recognizer, an initial
segmentation is used to produce a set of speech fragments. A large number of possible global masking func-
tions can be constructed by combining different subsets of the segmented features (Barker et al., 2005). The
recognizer then uses dynamic programming to explore the large space of all possible masking functions (a
related approach was used in Reyes-Gómez and Jojic, 2006). The approach of Ming et al. (2010) also uses
the recognizer in inferring the masking functions, but does so without an initial segmentation. Instead, it
approximately computes the likelihood of the best masking function for each frame by summing the likelihood
over sets of masking functions defined by the number of masked features, and choosing the set with the largest
sum. One drawback of the missing feature approach is that the features used must have the property that sig-
nals overlap as little as possible. In the feature spaces used by most speech recognizers, this property does not
hold.

Uncertainty decoding seeks to avoid the problems of both reconstruction and missing feature approaches,
by preserving the uncertainty in the reconstruction, and passing this along to the recognizer. In Shao et al.
(2010), a masking function is used along with a GMM speech model to reconstruct the masked portions of
the signal, and estimate the uncertainty of their reconstruction. These uncertainties are then used to modify
the recognition models in the feature domain of the recognizer. A drawback of this approach is that even
if the uncertainties in the masking domain have diagonal covariance, in general it is difficult to transform these
uncertainties into the feature space of the recognizer without requiring full covariance models. The main prob-
lem is that the uncertainty of a single spectral band is spread out in the cepstral domain by the discrete cosine
transform, so that without full covariances, local uncertainty becomes global uncertainty.

6.3. Signal interaction modeling

In model-based approaches one has to compute the likelihood of the observed signals, given models of the two
speakers. For reconstruction-based systems, one also has to compute an estimate of the hidden speaker signals.
Because signals are typically modelled in the log power spectrum, the exact signal interaction model is highly non-
linear, and various approximations are necessary. The Algonquin method (Frey et al., 2001) iteratively linearizes
the interaction function, and approximates the posterior of the two signals with a Gaussian for each combination
of states of the two speaker models. The max model approximates the logarithm of the sum of the two power spec-
tra using the logarithm of the maximum of the power spectra. Hershey et al. (2010) explored both Algonquin and
a max interaction model, with Algonquin working slightly better than the max model.

A simpler version of the max model known as the max vector-quantizer (MAXVQ, Roweis, 2003) model
was used in Li et al. (2010) and Weiss and Ellis (2010). In this version of the max model, a given signal either
dominates the other and hence is observed, or otherwise is masked. The observed parts of the signal need not
be estimated; for the masked portions, usually the prior mean of the signal for a given state or mixture com-
ponent is used as an estimate, as in Weiss and Ellis (2010). However, in Li et al. (2010) the signal estimates are
taken to be the prior mean of the winning component. Virtanen (2006), in contrast, computed likelihoods
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using parallel model combination (PMC), which uses a moment-matching approximation to the likelihood of
the log-sum of two Gaussians. In this case the posterior of the hidden speaker signals for a given state cannot
be computed, and instead the prior mean is used as an approximation. An interesting departure from these
cases is the non-negative matrix factorization approach of Schmidt and Olsson (2006), which models signals
directly in the spectrum as a sum over basis functions. In this case the interaction model is linear in the model
domain, and inference is greatly simplified.

In Ming et al. (2010) and Barker et al. (2010), missing feature approaches are used to avoid an explicit inter-
action model. The speech fragment decoding technique used in Barker et al. (2010) assumes, for a given mask-
ing pattern, that the masked regions have an energy less than the observed signal, which is consistent with the
max model. In contrast, the sub-band union model, introduced in Ming and Smith (2003) and employed by
Ming et al. (2010), entails a weaker assumption about interaction, in which time-frequency regions that have
high probability under the model are considered dominant, and low-probability regions are considered
masked, regardless of their relative amplitudes, an assumption also used in Reyes-Gómez and Jojic (2006).

In approaches that avoid explicit signal models, such as CASA components, there still may be an implicit
signal combination model. For instance in the CASA components of Barker et al. (2010) and Shao et al.
(2010) it is assumed that one source dominates in given time-frequency bin, while the other is masked, which
again suggests a max model.

6.4. Temporal modelling

A major point of difference between approaches hinges on how the dynamic properties of speech are used.
At the highest level, the task defines a word grammar for both the target and masker signals. Words are made
of phonemes, which describe the temporal evolution of aspects of the signal associated with the pronunciation.
There also may be dynamics associated with paralinguistic components of speech; that is, any features of a
speech signal that are not represented by the phonetic pronunciation of the words. For instance, the pitch
and amplitude of an utterance may follow patterns that are not inherent to the sequence of words being spo-
ken. All of the approaches ultimately use a speech recognizer with the task grammar as the final recognizer.
However, in the processing stages leading up to the final recognition, a variety of these dynamical constraints
are used in both the CASA and model-based approaches. Which constraints are used, whether or not they are
applied to both of the speakers, and how inference is done using the dynamics, tend to determine how accu-
rately, and how efficiently, each system can perform.

The two best performing systems (Hershey et al., 2010; Virtanen, 2006) used the task grammar for both the
target and the background signal to form a two-dimensional HMM model of the entire task, with one Markov
chain per talker. The main difficulty for such models is the computational complexity of exact inference. In
Virtanen (2006) approximate inference was done by alternating between the two Markov chains, holding
the state sequence of one constant while computing the Viterbi algorithm on the other. In Hershey et al.
(2010) this was compared with other techniques, including the exact 2-D Viterbi algorithm, and an efficient
loopy belief propagation algorithm. The exact algorithm worked best, but the loopy belief propagation algo-
rithm was within 3% in terms of absolute accuracy, despite being orders of magnitude more efficient. Hershey
et al. (2010) also investigated different levels of dynamics, and showed decreases in performance with less con-
strained dynamics. One of the experiments relaxed the dynamics of just the background model by using a bag-
of-words model for the background, resulting in an increase in overall error rate of 4.2% absolute. In Weiss
and Ellis (2010) a similar 2-D HMM system used phoneme-loop dynamics instead of the task grammar for
separation, but used the task grammar to recognize the separated signals.

The other approaches have used less tightly coupled models for target and background. In Ming et al.
(2010), the sub-band union model, which has a less coupled interaction model than the above methods, only
uses task dynamics for one signal at a time. After recognizing the dominant speaker, the result is used to
reconstruct an estimate of the background speaker signal, which in turn is recognized using the task grammar.
In the missing-feature approach of Barker et al. (2010), the task grammar dynamics determine the final seg-
mentation, but the initial segmentation is done using only low-level dynamics such as pitch contiguity and
voicing state transition.
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In contrast to the above, the approach of Shao et al. (2010) uses only low-level grouping cues, such as pitch,
to produce an initial segmentation, followed by grouping based on speaker-dependent GMM models. Thus
the task grammar is only used in the uncertainty decoding recognizer, after reconstruction has been done. Sim-
ilarly the model-based approach of Li et al. (2010) uses only single-frame models with no dynamics to recon-
struct the separated speech signals.

6.5. Speaker-dependent modeling

The majority of the systems that participated in the challenge used speaker-dependent models of both the
target and masking speakers to do separation, taking advantage of the constraint that the test speakers were
selected from a known set of 34 speakers, for which isolated training data was provided. Exceptions to this
trend included the system presented in Ming et al. (2010), which utilized a speaker-independent model for
the weaker source in the mixture, and the system of Barker et al. (2010), which used speaker-dependent models
to represent the target source, but does not assume that the masking signal is speech. To utilize speaker-depen-
dent models requires that the speakers present in the mixture be identified in a tractable manner. The speaker
identification systems used by challenge contestants are discussed in Section 6.6.

While the assumption that the target speaker is enrolled (and conforms to a specific grammar) is reasonable
in many applications, such assumptions about the masker are less applicable. In Hershey et al. (2010), the
authors investigated the effect of relaxing these assumptions about the masker on system performance. When
a gender-dependent background acoustic model with just 256 components was used, the error rate increased
by 4.1%. When a speaker-independent background model with just 256 components was used, the error rate
increased by 13.8%.

In many application domains, only a few seconds of data are provided during speaker enrollment, or it can-
not be assumed that the target speaker has enrolled. Adaptation is a natural way to try and generalize and
therefore improve the performance of any model-based system. In speech recognition, model adaptation is
a heavily studied research area, and is known to be critical to achieving state-of-the-art performance (Legget-
ter and Woodland, 1994; Gales, 1998; Rennie et al., 2006). In Weiss and Ellis (2010) the authors demonstrated
that for out-of-speaker-set test data, using the best speaker-dependent model from the training set does not
work as well as adapting a linear combination of the speaker-dependent models to best fit each test utterance.
Continued research into the generalization of the systems that participated in the speech separation challenge
to very large or open speaker sets is an important direction of future investigation.

6.6. Speaker identification

In speaker-dependent model-based systems it is necessary to determine the set of speakers that are present
in the utterance. An exhaustive search for the best speaker combination scales exponentially in number of
speakers in the mixture, and therefore is prohibitive to compute, even for two speakers. In the challenge, there
are two speakers in each mixture and 34 speakers to choose from for each speaker, and therefore 342 = 1156
possible speaker combinations to consider.

In Hershey et al. (2010), speakers were identified by using a single bank of speaker-dependent Gaussian
mixture models to represent mixed speech in the high resolution log frequency domain. Under the model it
is assumed that each frame is either dominated by a single source, or is unreliable. This approach avoids con-
sidering combinations of speaker models, and exploits the sparsity of the speech signal over time to identify
what speakers are present. Frames that lead to posterior speaker distributions that are not discriminative are
assumed to be unreliable and are discarded. An estimate of the posterior distribution of the speaker identities
for each utterance is obtained by averaging over the posteriors of reliable frames. This posterior estimate is
then used to select a small subset of likely speaker combinations to evaluate with a more accurate speaker
interaction model. The baseline system Hershey et al. (2010) predicted both the target and masker speakers
correctly in greater than 98% of all test utterances. Virtually the same system was adopted in Weiss and Ellis
(2010) and Li et al. (2010). In Li et al. (2010) the system was further tuned, yielding an accuracy of greater
than 99%.
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Barker et al. (2010) investigated a more sophisticated speaker identification algorithm that exploits the
sparsity of speech over time and frequency and integrates the task dynamics into the estimation. The system
is based upon a fragment-decoder with a CASA front-end, which selects what fragments are reliable based on
the constraints of the target speech model. Only the target source is explicitly modeled, and therefore only the
target speaker needs to be inferred, and so searching over combinations of speaker identities is not necessary.
By selecting the speaker that has the highest rate of increase in likelihood in the target-identifying part of the
grammar (‘white’), rather than selecting the speaker with the highest likelihood on the data, the target speaker
identification accuracy of their system improved from 88.9% to 93.7%, and the word accuracy of their system
improved from 59.1% to 63.8%. In Ming et al. (2010), the dominant speaker was identified by doing missing-
feature Viterbi decoding on the input mixture, using a single bank of bi-gram HMM speaker models. Here
again, taking a missing-feature approach to inference avoids having to consider combinations of speakers dur-
ing inference.

An alternative approach is to iteratively estimate the identities of the speakers to avoid considering all pos-
sible combinations of speaker models. This was implicitly done in Virtanen (2006) by using a bank of speaker
HMMs for both the target and masking sources coupled by a PMC interaction model, and iteratively decod-
ing one source given the current state-sequence estimate of the other source. Speaker identification accuracies
were not reported, but the approach was clearly effective: the performance of the system on the challenge task
was exceeded only by Hershey et al. (2010), and human listeners.

In Shao et al. (2010), speaker-dependent GMM models of both the target and masker in the gammatone-filter
(GF) domain were used to simultaneously group CASA-derived segments and determine the identities of the
speakers, using an approximate beam search over speaker identities and foreground-background assignments.
The overall target speaker identification accuracy of the system is 90.6%, and 46.4% for both speakers.

6.7. Speaker gain estimation

The test mixtures in the task were mixed additively at 6 TMRs ranging from �9 to 6 dB in 3 dB increments.
The gains of the speakers were unknown at test time, and therefore any speaker models that are used during
speech separation or recognition must be normalized to match the mixture data.

Ultimately, the efficacy of model-based speech separation and recognition systems hinges upon the accu-
racy of the speech model(s). When speaker-dependent models are utilized, the accuracy of the speaker iden-
tities depends upon the accuracy of their gains, and vice versa, which in turn ultimately determines how
representative the models used for speech separation and recognition are.

The speaker identification system presented in Hershey et al. (2010) and described in the previous section
used a quantized representation of gain to make the system gain-robust, and then jointly estimated the most
probable combination of speaker identities and gains on a small set of probable speaker combinations using a
more accurate interaction model. This speaker identification system was also used by Weiss and Ellis (2010)
and Li et al. (2010). In contrast in Virtanen (2006), the gains of the sources were iteratively estimated as part of
the iterative source decoding procedure.

In Barker et al. (2010), knowledge of the fact that the absolute gain of the target speaker is constant over all
TMRs in the training and test data was used, and the gain of the target speaker was not adapted. This
undoubtedly makes the recognition problem somewhat easier, and unfortunately it is not clear which other
contestants (if any) were aware and knowingly took advantage of this. In Hershey et al. (2010) (and presum-
ably in (Weiss and Ellis, 2010; Li et al., 2010), this information was not leveraged).

In Ming et al. (2010), the gain of the dominant source appears to be estimated only after decoding to recon-
struct the weaker source. This system therefore probably also benefits from the way that the data was artificially
mixed when the TMR is above 0 dB. In Shao et al. (2010), there is no mention of if and how the gains of the
speakers were estimated. Poor masker gains may explain the poor background speaker identification results.

6.8. Limitations and future challenges

The current challenge represents a step towards large-scale evaluations in the field of robust speech process-
ing, but has a number of limitations. The task, although challenging for humans and algorithms alike, is not
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representative of real-world speech understanding in adverse conditions, for a number of reasons. A single
competing talker from a known, small, closed set of talkers, while interesting from a behavioural perspective,
represents only one small corner of the space of background conditions in which speech is typically processed.
Similarly, in practice, the additive combination of target speech and background noise makes the simplifying
assumption that the two are independent, while it is known that speakers make quite complex modifications to
their productions in the presence of noise (Junqua, 1993). Other limitations of the current task include the
small vocabulary and highly-constrained grammar. Finally, the fact that speech and background were mixed
into a single channel provided no opportunities for those approaches which exploit two or more sensors, but
at the same time obviated the need to handle the difficult problem of reverberation. Ongoing and future chal-
lenges will relax some of these limitations. For example, Vincent et al. (2007) describes an evaluation campaign
for stereo audio source separation.

7. Conclusions

Speech understanding in the presence of an interfering talker is a challenging problem for listeners and
algorithms. This article introduced an evaluation task based on identifying keywords in sentences spoken
by a target talker when mixed with similar sentences produced by a masking talker. Submitted systems were
typically based on models for the target and background speech or were inspired by auditory scene analysis.
For the current task, where precisely two speakers from a known, closed set were mixed, model-based
approaches performed well, with one such system out-performing human listeners overall. The evaluation task
has a number of limitations which include the use of restricted vocabulary, syntax and talkers, single-channel
mixing under the assumption of target/masker independence, and a single background condition. Future eval-
uations will have to relax some of these constraints to approach the scientific goal of speech understanding in
everyday adverse conditions.
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