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Abstract

The statistical theory of speech recognition introduced several decades ago has brought about low word error rates

for clean speech. However, it has been less successful in noisy conditions. Since extraneous acoustic sources are present

in virtually all everyday speech communication conditions, the failure of the speech recognition model to take noise into

account is perhaps the most serious obstacle to the application of ASR technology.

Approaches to noise-robust speech recognition have traditionally taken one of two forms. One set of techniques

attempts to estimate the noise and remove its effects from the target speech. While noise estimation can work in

low-to-moderate levels of slowly varying noise, it fails completely in louder or more variable conditions. A second

approach utilises noise models and attempts to decode speech taking into account their presence. Again, model-based

techniques can work for simple noises, but they are computationally complex under realistic conditions and require

models for all sources present in the signal.

In this paper, we propose a statistical theory of speech recognition in the presence of other acoustic sources. Unlike

earlier model-based approaches, our framework makes no assumptions about the noise background, although it can

exploit such information if it is available. It does not require models for background sources, or an estimate of their

number. The new approach extends statistical ASR by introducing a segregation model in addition to the conventional

acoustic and language models. While the conventional statistical ASR problem is to find the most likely sequence of

speech models which generated a given observation sequence, the new approach additionally determines the most likely

set of signal fragments which make up the speech signal. Although the framework is completely general, we provide one

interpretation of the segregation model based on missing-data theory. We derive an efficient HMM decoder, which

searches both across subword state and across alternative segregations of the signal between target and interference.

We call this modified system the speech fragment decoder.

The value of the speech fragment decoder approach has been verified through experiments on small-vocabulary tasks

in high-noise conditions. For instance, in a noise-corrupted connected digit task, the new approach decreases the word

error rate in the condition of factory noise at 5dB SNR from over 59% for a standard ASR system to less than 22%.
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1. Introduction

In the real world, the speech signal is frequently

accompanied by other sound sources on reaching

the auditory system, yet listeners are capable of

holding conversations in a wide range of listening

conditions. Recognition of speech in such �adverse�
conditions has been a major thrust of research in

speech technology in the last decade. Nevertheless,

the state of the art remains primitive. Recent
international evaluations of noise robustness have

demonstrated technologically useful levels of

performance for small vocabularies in moderate

amounts of quasi-stationary noise (Pearce and

Hirsch, 2000). Modest departures from such con-

ditions lead to a rapid drop in recognition

accuracy.

A key challenge, then, is to develop algorithms
to recognise speech in the presence of arbitrary

non-stationary sound sources. There are two

broad categories of approaches to dealing with

interference for which a stationarity assumption

is inadequate. Source-driven techniques exploit evi-

dence of a common origin for subsets of source

components, while model-driven approaches utilise

prior (or learned) representations of acoustic
sources. Source-driven approaches include primi-

tive auditory scene analysis (Brown and Cooke,

1994; Wang and Brown, 1999; see review in Cooke

and Ellis, 2001) based on auditory models of pitch

and location processing, independent component

analysis and blind source separation (Bell and

Sejnowski, 1995; Hyvärinen and Oja, 2000) which

exploit statistical independence of sources, and
mainstream signal processing approaches (Parsons,

1976; Denbigh and Zhao, 1992). The prime exam-

ples of model-driven techniques are HMM decom-

position (Varga and Moore, 1990) and parallel

model combination (PMC) (Gales and Young,

1993), which attempt to find model state sequence

combinations which jointly explain the acoustic

observations. Ellis� �prediction-driven� approach
(Ellis, 1996) can also be regarded as a technique

influenced by prior expectations.
Pure source-driven approaches are typically

used to produce a clean signal which is then fed

to an unmodified recogniser. In real-world listen-

ing conditions, this segregate-then-recognise ap-

proach fails (see also the critique in Slaney,

1995), since it places too heavy a demand on the

segregation algorithm to produce a signal suitable

for recognition. Conventional recognisers are
highly sensitive to the kinds of distortion resulting

from poor separation. Further, while current algo-

rithms do a reasonable job of separating periodic

signals, they are less good both at dealing with

the remaining portions and extrapolating across

unvoiced regions, especially when the noise back-

ground contains periodic sources. The problem

of distortion can be solved using missing data
(Cooke et al., 1994, 2001) or multiband (Bourlard

and Dupont, 1997) techniques, but the issue of

sequential integration across aperiodic intervals

remains.

Pure model-driven techniques also fail in prac-

tice, due to their reliance on the existence of mod-

els for all sources present in a mixture, and the

computational complexity of decoding multiple
sources for anything other than sounds which pos-

sess a simple representation.

There is evidence that listeners too use a combi-

nation of source and model driven processes

(Bregman, 1990). For instance, vowel pairs pre-

sented concurrently on the same fundamental

can be recognised at levels well above chance, indi-

cating the influence of top-down model-matching
behaviour, but even small differences in fundamen-

tal—which create a source-level cue—lead to sig-

nificant improvements in identification indicating

that the model-driven search is able efficiently to

exploit the added low-level information (Scheffers,

1983). Similarly, when the first three speech form-

ants are replaced by sinusoids, listeners recognise

the resulting sine-wave speech at levels approach-
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ing natural speech, generally taken as evidence of a

purely top-down speech recognition mechanism,

since the tokens bear very little resemblance to

speech at the signal level (Bailey et al., 1977;

Remez et al., 1981). However, when presented with
a sine-wave cocktail party consisting of a pair of

simultaneous sine-wave sentences, performance

falls far below the equivalent natural speech sen-

tence-pair condition, showing that low-level signal

cues are required for this more demanding condi-

tion (Barker and Cooke, 1999).

In this paper, we present a framework which

attempts to integrate source- and model-driven
processes in robust speech recognition. We demon-

strate how the decoding problem in ASR can be

extended to incorporate decisions about which re-

gions belong to the target signal. Unlike pure

source-driven approaches, the integrated decoder

does not require a single hard-and-fast prior segre-

gation of the entire target signal, and, in contrast

to pure model-based techniques, it does not as-
sume the existence of models for all sources pre-

sent. Since it is an extension of conventional

speech decoders, it maintains all of the advantages

of the prevailing stochastic framework for ASR by

delaying decisions until all relevant evidence has

been observed. Furthermore, it allows a tradeoff

between the level of detail derived from source-dri-

ven processing and decoding speed.
Fig. 1 motivates the new approach. The upper

panel shows an auditory spectrogram of the utter-

ance ‘‘two five two eight three’’ spoken by a male

speaker mixed with drum beats at a global SNR

of 0dB. The centre panel segments the time-fre-

quency plane into regions, which are dominated

(in the sense of possessing a locally-favourable

SNR) by one or other source. The correct assign-
ment of regions to the two sources is shown in

the lower panel.

In outline, our new formalism defines as an

admissible search over all combinations of regions

(which we call fragments) to generate the most

likely word sequence (or, more generally, sequence

of source models). This is achieved by decompos-

ing the likelihood calculation into three parts: in
addition to the conventional language model term,

we introduce a segregation model, which defines
how fragments are formed, and a modified acoustic

model, which links the observed acoustics to source

models acquired during training.

Section 2 develops the new formalism, and

shows how the segregation model and partial
acoustic model can be implemented in practice.

Section 3 demonstrates the performance of the

resulting decoder applied to digit strings with

added noise. Section 4 discusses issues that have

arisen with the current decoder implementation

and future research directions.
2. Theoretical development

The simultaneous segregation/recognition ap-

proach can be formulated as an extension of the

existing speech recognition theory. When formu-

lated in a statistical manner, the goal of the speech

recogniser is traditionally stated as to find the

word sequence bW ¼ w1;w2; . . . ;wN with the maxi-
mum a posteriori probability given the sequence of

acoustic feature vectors observed for the speech,

X = x1,x2, . . .,xT:

bW ¼ argmax
W

P ðW jXÞ: ð1Þ

This equation is rearranged using Bayes� rule
into

bW ¼ argmax
W

P ðX jW ÞP ðW Þ
P ðX Þ ; ð2Þ

which separates the prior probability of the word
sequence alone P(W) (the language model), the

distribution of the speech features for a particu-

lar utterance, P(XjW) (the acoustic model), and

the prior probability of those features P(X)

(which is constant over W and thus will not

influence the outcome of the argmax). P(W)

may be trained from the word sequences in a

large text corpus, and P(XjW) is learned by mod-
elling the distribution of actual speech features

associated with particular sounds in a speech

training corpus.

Following our considerations above, we may re-

state this goal as finding the word sequence, bW ,



Fig. 1. The top panel shows the auditory spectrogram of the utterance ‘‘two five two eight three’’ spoken by a male speaker mixed with

drum beats at 0dB SNR. The lower panel shows the correct segregation of speech energy (black) and drums energy (grey). The centre

panel illustrates the set of fragments generated using knowledge of the speech source and the noise source prior to mixing.
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along with the speech/background segregation, bS ,
which jointly have the maximum posterior

probability.

Further, because the observed features are no

longer purely related to speech but in general in-

clude the interfering acoustic sources, we will de-

note them as Y to differentiate them from the X
used in our speech-trained acoustic models

P(XjW). 2

bW ; bS ¼ argmax
W ;S

P ðW ; SjYÞ: ð3Þ

To reintroduce the speech features X, which are
now an unobserved random variable, we integrate

the probability over their possible values, and

decompose with the chain rule to separate out

P(SjY), the probability of the segregation based

on the observations:
2 Note, if we were not interested in the speech/background

segregation but only in the most likely word sequence regardless

of the actual segregation then it would be more correct to

integrate Eq. (3) over the segregation space defining

W0 = argmaxW
P
SP(W,SjY). However, this integration pre-

sents some computational complexity so in practice even if we

were not directly interested in the segregation it may be

desirable to implement Eq. (3) directly and take bW as an

approximation of W 0.
P ðW ;SjYÞ ¼
Z

P ðW ;X ;SjYÞdX ð4Þ

¼
Z

P ðW jX ;S;YÞP ðX jS;YÞdX �P ðSjYÞ:

ð5Þ
SinceW is independent of S and Y given X, the

first probability simplifies to P(WjX). As in the

standard derivation, we can rearrange it via Bayes�
rule to obtain a formulation in terms of our

trained distribution models P(W) and P(XjW):

P ðW ; SjYÞ ¼
Z

PðX jW ÞP ðW Þ
PðXÞ PðX jS;YÞdX � P ðSjYÞ ð6Þ

¼ P ðW Þ
Z

PðX jW Þ PðX jS;YÞ
PðXÞ dX

� �
P ðSjYÞ:

ð7Þ
Note that because X is no longer constant, we can-

not drop P(X) from the integral.

In the case of recognition with hidden Markov

models (HMMs), the conventional derivation

introduces an unobserved state sequence Q = q1,

q2, . . .,qT along with models for the joint probabil-

ity of word sequence and state sequence
P(W,Q) = P(QjW)P(W). The Markovian assump-

tions include making the feature vector xi at time i

depend only on the corresponding state qi, making

P(XjQ) = �iP(xijqi). The total likelihood of a par-

ticular W over all possible state sequences is nor-
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mally approximated by the score over the single

most-likely state sequence (the Viterbi path). In

our case, this gives,

bW ; bS ¼ argmax
W ;S

max
Q2QW

P ðSjYÞP ðW ÞPðQjW Þ

�
Z

P ðX jQÞ PðX jS;YÞ
P ðXÞ dX ; ð8Þ

where QW represents the set of all allowable state
sequences corresponding to word sequence W.

Compare Eq. (8) to the corresponding equation

for identifying the word sequence in a conven-

tional speech recogniser:

bW ¼ argmax
W

max
Q2QW

P ðW ÞP ðQjW ÞP ðX jQÞ: ð9Þ

It can be seen that there are three significant

differences:

(1) A new term, P(SjY ) has been introduced. This

is the �segregation model�, describing the prob-
ability of a particular segregation S given our

actual observations Y, but independent of

the word hypothesis W—precisely the kind

of information we expect to obtain from a

model of source-driven, low-level acoustic

organisation.

(2) The acoustic model score P(XjQ) is now eval-

uated over a range of possible values for X,
weighted by their relative likelihood given the

observed signal Y and the particular choice

of segregation mask S. This is closely related

to previous work on missing data theory,

and is discussed in more detail in Section 2.3.

(3) The maximisation now occurs over both W

and S. Whereas conventional speech recogni-

tion searches over the space of words
Search algorithm
e.g. modified decoder

Segregation model
source-level grouping processes

Language m
bigrams, dicti

Fig. 2. An overview of the speech
sequences, the extended approach has to

simultaneously search over the space of all

admissible segregations.

In the terms of Bregman�s �Auditory Scene
Analysis� account (Bregman, 1990), the segrega-

tion model may be identified as embodying the

so-called �primitive grouping process�, and the

acoustic model plays the part of the �schema-dri-

ven grouping process�. Eq. (8) serves to integrate

these two complementary processes within the

probabilistic framework of ASR. The maximisa-

tion over W and S can be achieved by extending
the search techniques employed by traditional

ASR. These three key aspects of the work, namely,

the segregation model, the acoustic model and the

search problem are addressed in greater detail in

the sections which follow (Fig. 2).
2.1. The segregation model

Consider the space of potential speech/back-

ground segregations. An acoustic observation vec-

tor, X may be constructed as a sequence of frames

x1,x2, . . .,xT where each frame is composed of

observations pertaining to a series of, say F, fre-

quency channels. The observation vector is there-

fore composed of T · F spectro-temporal

features. A speech/background segregation may
be conveniently described by a binary mask in

which the label �1� is employed to signify that the

feature belongs to the speech source, and a �0� to
signify that the feature belongs to the background.

As this binary mask has T · F elements it can be

seen that there are 2TF possible speech/background

segregations. So, for example, at a typical frame

rate of 100Hz, and with a feature vector employ-
ing 32 frequency channels, there would be 23200
odel
onary

Acoustic model
schema-driven processes

Segregation weighting
connection to observations

fragment decoding equation.
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possible segregations for a one second audio

sample.

Fortunately, most of these segregations can be

ruled out immediately as being highly unlikely

and the size of the search space can be drastically
reduced. The key to this reduction is to identify

spectro-temporal regions for which there is strong

evidence that all the spectro-temporal pixels con-

tained are dominated by the same sound source.

Such regions constrain the spectro-temporal pixels

contained to share the same speech/background

label. Hence, for each permissible speech/back-

ground segregation, the pixels within any given
fragment must either all be labelled as speech

(meaning that the fragment is part of the speech

source) or must all be labelled as background

(meaning that the fragment is part of some other

source). Consequently, if the spectro-temporal

observation vector can be decomposed into N such

fragments, there will be 2N separate ways of label-

ling the fragments and hence only 2N valid segre-
gations. In general each fragment will contain

many spectro-temporal pixels, and 2N will be

vastly smaller than the size of the unconstrained

segmentation search space, 2TF.

The success of the segregation model depends

on being able to identify a reliable set of coherent

fragments. The process of dissecting the represen-

tation into fragments is similar to the process that
occurs in visual scene analysis. The first stage of

interpreting a visual scene is to locate regions

within the scene that are components of larger ob-

jects. For this purpose all manner of primitive

processes may be employed: edge detection, conti-

nuity, uniformity of colour, uniformity of texture

etc. Analogous processes may be used in the anal-

ysis of the auditory �scene�, for example, spectro-
temporal elements may be grouped if they form

continuous tracks (i.e. akin to visual edge detec-

tion), tracks may be grouped if they lie in har-

monic relation, energy regions may grouped

across frequency if they onset or offset at the same

time. Fig. 3 illustrates some of the mechanisms

that may be used to bind spectro-temporal regions

to recover partial descriptions of the individual
sound sources. A detailed account of these so-

called �primitive grouping processes� is given in

(Bregman, 1990).
In the experiments that follow, each of the 2N

valid segregations is allocated an equal prior prob-

ability. This stands as a reasonable first approxi-

mation. However, a more detailed segregation

model could be constructed in which the segrega-
tion priors vary across segregations. Such a model

would take into account factors like the relation-

ship between the individual fragments of which

they are composed. For example, if there are two

fragments which cover spectro-temporal regions

in which the acoustic data is periodic and has the

same fundamental frequency, then these two frag-

ments are likely to be parts of the same sound
source, and hence segregations in which they are

labelled as either both speech or both background

should be favoured. Section 4.3 discusses further

such �between-fragment grouping� effects and of

the modifications to the search algorithm that they

require.

2.2. The search problem

The task of the extended decoder is to find the

most probable word sequence and segregation

given the search space of all possible word se-

quences and all possible segregations. Given that

the acoustic match score:

P ðX jQÞP ðXjS;YÞ=P ðXÞ; ð10Þ
is conditioned both on the segregation S and the

subword state Q, the (S,Q) search space cannot

in general be decomposed into independent

searches over S and Q. Since the size of the S space

expands the overall search space it is imperative
that the search in the plane of the segregation

space is conducted as efficiently as possible.

To illustrate this point, imagine a naive imple-

mentation of the search illustrated in Fig. 4. In this

approach, each segregation hypothesis is consid-

ered independently, and therefore requires a sepa-

rate word sequence search. If the segregation

model has identified N coherent fragments, then
there will be 2N segregation hypotheses to con-

sider. Hence, the total computation required for

the decoding will scale exponentially with the num-

ber of fragments. The total number of fragments is

likely to be a linear function of the duration of the

acoustic mixture being processed, therefore the



Fig. 3. An illustration of short-term (above) and long-term (below) primitive grouping cues which may be exploited to recover partial

descriptions of individual sound sources. The figure shows a time-frequency representation of two simultaneous speech utterances.

Regions where the energy of one source dominate are shown in dark grey, while those of the other source are in light grey.
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computation required will be an exponential func-
tion of this duration. For sufficiently large vocab-

ularies, the cost of decoding the word sequence

typically makes up the greater part of the total

computational cost of ASR. It is clear that the

naive implementation of the word sequence/segre-

gation search is unacceptable unless the total num-

ber of fragments is very small.

The key to constructing an efficient implemen-
tation of the search is to take advantage of similar-

ities that exist between pairs of segregation

hypotheses. Consider the full set of possible segre-

gations. There is a unique segregation for every

possible assignment of speech/background label-

ling to the set of fragments. For any given pair

of hypotheses, some fragments will have the same

label. In particular, some hypotheses will differ
only in the labelling of a single fragment. For such
pairs, the speech/background segregation will be

identical up to the time frame where the differing

fragment onsets, and identical again from the

frame where the fragment offsets. The brute-force

search performs two independent word sequence

searches for two such similar segregation hypothe-

ses (see Fig. 5, column 1). The computational cost

of these two independent searches may be reduced
by allowing them to share processing up to the

time frame where the segregation hypotheses dif-

fer—i.e. the onset of the fragment that is labelled

differently in each hypothesis, marked as time T1

in column 2 of Fig. 5. This sharing of computation

between pairs of segregation hypotheses can be

generalised to encompass all segregation hypothe-

ses by arranging them in a graph structure. As we
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progress through time, new fragment onsets cause

all current segregation hypotheses to branch,

forming two complementary sets of paths. In one

set, the onsetting fragment is considered to be
speech while in the other it is considered to be

background. However, although this arrangement

saves some computation, the number of segrega-

tion hypotheses under consideration at any partic-

ular frame still grows exponentially with time. This

exponential growth may be prevented by noting

that segregation hypotheses will become identical

again after the offset of the last fragment by which
they differ (marked as time T2 in column 3 of Fig.

5). At this point, the two competing segregation

hypotheses can be compared and the least likely

of the pair can be rejected without affecting the

admissibility of the search. Again, this step can

be generalised to encompass all segregation

hypotheses and effectively brings together the
branches of the diverging segregation hypothesis

tree.

Fig. 6 illustrates the evolution of a set of parallel

segregation hypotheses while processing a segment
of noisy speech which has been dissected into three

fragments (shown schematically by the shaded re-

gions in the figure). When the first fragment (white)

commences, two segregation hypotheses are

formed. In one hypothesis, the white fragment is la-

belled as speech, while in the other it is assigned to

the background. When the grey fragment starts, all

ongoing hypotheses are again split with each pair
covering both possible labellings for the grey frag-

ment. When the white fragment ends, pairs of

hypotheses are merged if their labelling only differs

with regard to the white fragment. This pattern of

splitting and merging continues until the end of

the utterance. Note that at any instant there are

at most four active segregation hypotheses, not
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the eight required to consider every possible label-

ling of each of the three fragments.

It is important to understand that the evolution

of segregation hypotheses is dependent on the
word sequence hypothesis. For each ongoing word

sequence being considered by the decoder, a par-
ticular corresponding optimal segregation is simul-

taneously developed.

If the word sequence is modelled using HMMs,

then the segregation/word-sequence decoder can
be implemented by extending the token-passing

Viterbi algorithm employed in conventional ASR:



3 This also assumes independence of each time step for the

prior P(X) and for the likelihood of X given the segregation

hypothesis and observations, P(XjS,Y). Both these assumptions

are open to serious question, and we return to them in Section

4.
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• Tokens keep a record of the fragment assign-

ments they have made, i.e. each token stores

its labelling of each fragment encountered as

either speech or background.

• Splitting: When a new fragment starts all exist-
ing tokens are duplicated. In one copy the new

fragment is labelled as speech and in the other it

is labelled as background.

• Merging: When a fragment ends, then for each

state we compare tokens that differ only in the

label of the fragment that is ending. The less

likely token or tokens are deleted.

• At each time frame, tokens propagate through
the HMM as usual. However, each state can

hold as many tokens as there are different label-

lings of the currently active fragments. When

tokens enter a state only those with the same

labelling of current active fragments are directly

compared. The token with the highest likeli-

hood score survives and the others are deleted.

It should be stressed that the deletion of tokens

in the �merging� step described above does not af-

fect the admissibility of the search (i.e. it is not a

form of hypothesis pruning). The efficient algo-

rithm will return an identical result to that of a

brute-force approach, which separately considers

every word-sequence/segregation hypothesis. This

is true as long as the Markov assumption remains
valid. In the context of the above algorithm this

means that the future of a partial hypothesis must

be independent of its past. This places some con-

straints on the form of the segregation model.

For example, the Markov assumption may break

down if the segregation model contains between-

fragment grouping effects in which the future scor-

ing of a partial hypothesis may depend on which
groups it has previously interpreted as part of

the speech source. In this case the admissibility

of the search can be preserved by imposing extra

constraints on the hypothesis merging condition.

This point is discussed further in Section 4.3.

2.3. The acoustic model

In Eq. (8), the acoustic model data likelihood

P(XjQ) of a conventional speech recogniser is re-

placed by an integral over the partially-observed
speech features X, weighted by a term conditioned

on the observed signal features Y and the segrega-

tion hypothesis S:Z
PðX jQÞ PðX jS;YÞ

P ðXÞ dX ; ð11Þ

where P(XjQ) is the feature distribution model of

a conventional recogniser trained on clean speech,

and P(XjS,Y)/P(X) is a likelihood weighting fac-

tor introducing the influence of the particular

(noisy) observations Y and the assumed segrega-

tion S.

The integral over the entire space of X—the full
multidimensional feature space at every time

step—is clearly impractical. Fortunately, it can

be broken down into factors. Firstly, the Markov

assumption of independent emissions given the

state sequence allows us to express the likelihood

of the sequence as the product of the likelihoods

at each time step i: 3Z
PðX jQÞ PðX jS;YÞ

P ðXÞ dX

¼
Y
i

Z
P ðxijqiÞ

P ðxijS;YÞ
P ðxiÞ

dxi: ð12Þ

Secondly, in a continuous-density (CDHMM)

system, P(xjq) is modelled as a mixture of M mul-

tivariate Gaussians, usually each with a diagonal

covariance matrix:

P ðxjqÞ ¼
XM
k¼1

P ðkjqÞP ðxjk; qÞ; ð13Þ

where P(kjq) are the mixing coefficients. Since the

individual dimensions of a diagonal-covariance

Gaussian are independent, we can further factor-

ise the likelihood over the feature vector elements

xj:

P ðxjqÞ ¼
XM
k¼1

P ðkjqÞ
Y
j

P ðxjjk; qÞ: ð14Þ
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Assuming a similar decomposition of the prior

P(X), we can take the integral of Eq. (12) inside

the summation to give:Z
P ðxjqÞ P ðxjS;YÞ

P ðxÞ dx

¼
XM
k¼1

P ðkjqÞ
Y
j

Z
P ðxjjk; qÞ

P ðxjjS;YÞ
P ðxjÞ

dxj;

ð15Þ

where P(xjjk,q) is now a simple unidimensional

Gaussian.

We can consider the factor

P ðxjjS;YÞ
P ðxjÞ

ð16Þ

as the �segregation weighting�—the factor by

which the prior probability of a particular value

for the speech feature is modified in light of the

segregation mask and the observed signal. Since
we are working with models of subband spectral

energy, we can use a technique closely related to

the missing-data idea of bounded integration

(Cooke et al., 2001): For subbands that are

judged to be dominated by speech energy (i.e.,

under the segregation hypothesis S, not one of

the �masked� channels), the corresponding feature

values xk can be calculated directly 4 from the
observed signal Y and hence the segregation

weighting will be a Dirac delta at the calculated

value, x*:

P ðxjjS;YÞ ¼ dðxj 	 x
Þ; ð17Þ
Z

P ðxjjk; qÞ
PðxjjS;YÞ

P ðxjÞ
dxj ¼ Pðx
jk; qÞ=Pðx
Þ:

ð18Þ
4 The observed signal Y will in general be a richer

representation than simply the subband energies that would

have formed x in the noise-free case, since it may include

information such as spectral fine-structure used to calculate

pitch cues used in low-level segregation models, etc. However,

the information in x will be completely defined given Y in the

case of a segregation hypothesis that rates the whole spectrum

as unmasked for that time slice.
The other case is that the subband correspond-

ing to x is regarded as masked under the segrega-

tion hypothesis. We can still calculate the spectral

energy x* for that band, but now we assume that

this level describes the masking signal, and the
speech feature is at some unknown value smaller

than this. In this case, we can model P(xjS,Y) as
proportional to the prior P(x) for x 6 x*, and zero

for x > x*. Thus,

P ðxjjS;YÞ ¼
F � P ðxjÞ xj 6 x
;

0 xj > x
;

�
ð19Þ

Z
P ðxjjk; qÞ

P ðxjjS;YÞ
P ðxjÞ

dxj ¼
Z x


	1
P ðxjjk; qÞ � F dxj;

ð20Þ
where F is a normalisation constant to keep the

truncated distribution a true pdf i.e.

F ¼ 1R x


	1 P ðxjÞdxj
ð21Þ

In Eq. (20), the likelihood gets smaller as more

of the probability mass associated with a particu-

lar state lies in the range precluded by the masking

level upper bound; it models the �counterevidence�
(Cunningham and Cooke, 1999) against a particu-

lar state. For example, given a low x* the quieter

states will score better then more energetic ones.

Since the elemental distributions P(xjjk,q) are sim-
ple Gaussians, each integral is evaluated using the

standard error function.

Both the scaling factor F in Eq. (20) and the

evaluation of the point-likelihood in Eq. (18) re-

quire a value for the speech feature prior P(xj).

In the results reported below we have made the

very simple assumption of a uniform prior on

our cube-root compressed energy values between
zero and some fixed maximum xmax, constant

across all feature elements and intended to be lar-

ger than any actual observed value. This makes the

prior likelihood P(xj) equal a constant 1/xmax and

F = xmax/x* / 1/x*.

Using Eq. (18) for the unmasked dimensions

and Eq. (20) for the masked dimensions we can

evaluate the acoustic data likelihood (or �acoustic
match score�) for a single state at a particular time

slice with Eq. (15) which becomes:
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Z
P ðxjqÞ P ðxjS;YÞ

P ðxÞ dx

¼
XM
k¼1

PðkjqÞ
Y
j2SO

Pðx
j jk; qÞ � xmax

Y
j2SM

�
Z

P ðxjjk; qÞ �
xmax

x
j
dxj; ð22Þ

where SO is the set of directly observed (not

masked) dimensions of x, SM are the remaining,

masked, dimensions, and x
j is the observed spec-

tral energy level for a particular band j. This per-

time likelihood can then be combined across all

timeslices using Eq. (12) to give the data likelihood

for an entire sequence.
In practise it has been observed that Eq. (22)

exhibits a bias towards favouring hypotheses in

which too many fragments have been labelled as

background, or alternatively towards hypotheses

in which too many fragments have been labelled

as speech. The reasons for this bias are presently

unclear, but one possibility is that is it introduced

by the uniform prior employed for P(xj). As an
approximate solution to this problem, the results

of the integrations across the masked dimensions

are scaled by a tuning parameter a shifting the rel-

ative likelihood of the missing and present dimen-

sions. Giving a a high value tunes the decoder

toward favouring hypotheses in which more frag-

ments are labelled as background, while a low

value favours hypotheses in which more fragments
are labelled as speech. Experience has shown that

the appropriate value of a depends largely on the

nature of the fragments (i.e. the segregation

model) and little on the noise type or noise level.
time
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Fig. 7. An overview of the speech fragment decoding system. Bott

(regions of representation that are due entirely to one source) and th

search for the most likely combination of fragment labelling and spe
Hence, it is easy to tune the system empirically

using a small development data set.

Finally, it is instructive to compare the speech

fragment decoding approach being proposed here

with the missing data approach proposed in earlier
work (Cooke et al., 1994, 2001). Basic missing data

recognition consists of two separate steps per-

formed in sequence: first, a �present-data� mask is

calculated, based, for instance, on estimates of

the background noise level. Second, missing data

recognition is performed by searching for the most

likely speech model sequence consistent with this

evidence. By contrast, the speech fragment decod-
ing approach integrates these two steps, so that the

search includes building the present-data mask to

find the subset of features most likely to corre-

spond to a single voice, while simultaneously

building the corresponding most likely word se-

quence (Fig. 7).

2.4. Illustrative example

Fig. 8(A) shows the spectrogram of the utterance

‘‘seven five’’, to which a stationary background

noise and a series of broadband high-energy noise

bursts have been added (panel B). The initial

frames of the signal can be employed to estimate

and identify the stationary noise component, leav-

ing the unmasked speech energy and the non-sta-
tionary noise bursts as candidate �present data�,
as shown in panel C. This however must be broken

up into a set of fragments to permit searching by

the speech fragment decoder.

In order to confirm that the top-down process

in the decoder is able to identify the valid speech
Speech Fragment
Decoder

Search
Top Down

nd Fragments

ents

Word–sequence
Hypothesis

Speech
Models

Segregation Hypothesis
Speech/Background

om-up processes are employed to locate �coherent fragments�
en a top-down search with access to speech models is used to

ech model sequence.



Fig. 8. An example of the speech fragment decoder�s operation on a single noisy utterance: Panel A shows a spectrogram of the

utterance ‘‘seven five’’. Panel B shows the same signal but after adding a two state noise source. Panel C shows the components of the

mixture that are not accounted for by the adaptive background noise model. Panel D displays a test set of perfectly coherent fragments

generated using a priori knowledge of the clean signal. Panel E shows the groups that the speech fragment decoder identifies as being

speech groups. The correct assignment is shown in panel F. Panel G plots the number of grouping hypotheses that are being considered

at each time frame.
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fragments, its performance was tested using a

small set of �ideal� coherent fragments. These can

be generated by applying a priori knowledge of

the clean speech, i.e. comparing the clean and

noisy spectrograms to mark out the exact regions
where either the speech or the noise bursts domi-

nate. The ideal fragments are simply the contigu-

ous regions which are formed by this segregation

process (see Panel D of Fig. 8).

Given these fragments, the decoder is able to

correctly recognise the utterance as ‘‘seven five’’,

using the fragments in panel E as evidence of the

speech. The correct speech/noise fragment label-
ling is shown in panel F. Comparing E and F, it

can be seen that the decoder has accepted all the

speech fragments, while correctly rejecting all the

larger fragments of noise. (Some small noise re-

gions have been included in the speech, implying

their level was consistent with the speech models.)
5 This technique assumes that there is a delay before the

speech source starts and hence the first frames provide a reliable

measure of the noise background.
3. Experiments employing SNR-based fragments

The first set of experiments employ a connected

digit recognition task and compare the perform-

ance of the speech fragment decoding technique

with that of previously reported missing data tech-

niques in which the speech/background segrega-

tion is effectively decided before proceeding with
recognition (Cooke et al., 2001). The segregation

model employed has been kept extremely simple.

The coherent fragments are approximated directly

from the acoustic mixture by using a simple noise

estimation technique. The techniques presented

here serve as a useful baseline against which the

performance of more sophisticated segregation

models can be compared.

3.1. Procedure

3.1.1. Feature vectors

The experiments in this section employ TIDigit

utterances (Leonard, 1984) mixed with NOISEX

factory noise (Varga et al., 1992) at various SNRs.

NOISEX factory noise has a stationary back-
ground component but also highly unpredictable

components such as hammer blows etc. which

make it particularly disruptive for recognisers.
To produce the acoustic feature vectors the

noisy mixtures were first processed with a 24 chan-

nel auditory filterbank (Cooke, 1991) with centre

frequencies spaced linearly in ERB-rate from 50

to 8000Hz. The instantaneous Hilbert envelope
at the output of each filter was smoothed with a

first order filter with an 8ms time constant, and

sampled at a frame-rate of 10ms. Finally, cube-

root compression was applied to the energy

values.

This forms a spectro-temporal sound energy

representation that is suitable for segregation. This

representation will henceforth be referred to as an
�auditory spectrogram�.

3.1.2. Fragments

The fragments were generated by the following

steps:

(1) For each noisy utterance the first 10 frames of

the auditory spectrogram are averaged to esti-
mate a stationary noise spectrum. 5

(2) The noise spectrum estimate is used to esti-

mate the local SNR for each frame and fre-

quency channel of the noisy utterance.

(3) The spectro-temporal region where the local

SNR is above 0dB is identified. This provides

a rough approximation of the speech/back-

ground segregation.
If the additive noise source were stationary

then the first three steps would provide the

correct speech/background segregation and

the speech fragment decoder technique would

not be needed. However, if the competing

noise source is non-stationary then some of

the regions that are identified as speech will

in fact be due to the noise. Hence, we now
proceed with the following steps, which allow

the speech fragment decoder technique to im-

prove on the recognition result that would

have been achieved if we had used the initial

approximation to the speech/background

segregation.
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(4) The initial approximation of the speech seg-

ment is dissected by first dividing it into four

frequency bands.

(5) Each contiguous region within each of the four

subbands is defined to be a separate fragment.
(6) The set of fragments and the noisy speech rep-

resentation are passed to the speech fragment

decoder.

The fragmentation process is summarised in

Fig. 9.

3.1.3. Acoustic models

An 8-state HMM was trained for each of the

eleven words in the TIDigit corpus vocabulary

(digits �one� to �nine�, plus the two pronunciations

of 0, namely �oh� and �zero�). The HMM states

have two transitions each; a self transition and a

transition to the following state. The emission dis-

tribution of each state was modelled by a mixture

of 10 Gaussian distributions each with a diagonal
covariance matrix. An additional 3-state HMM

was used to model the silence occurring before

and after each utterance, and the pauses that

may occur between digits.

The scaling constant, a, required to balance

missing and present data (see Section 2.3), was

empirically tuned by maximising recognition per-

formance on a small set of noisy utterances with
Fig. 9. A summary of the front-end processing used to generate the
an SNR of 10dB. The value a = 0.3 was found

to give best performance. This value was then used

for all noise levels during testing.

3.2. Artificial examples

As explained above, if the background noise is

non-stationary the local SNR estimates (which

have been based on the assumption that the noise

is stationary), may be grossly inaccurate. A local

peak in noise energy can lead to a spectro-tempo-

ral region that is mistakenly labelled as having

high local SNR. This error then generates a region
in the initial estimate of the speech/background

segregation that is incorrectly identified as belong-

ing to the speech source. If this segregation is used

directly in conjunction with standard missing data

techniques then the error will lead to poor recogni-

tion performance.

Fragmenting the initial speech segregation

and applying the speech fragment decoder should
allow incorrectly assigned regions to be rejected

from the speech source, thereby producing a bet-

ter recognition hypothesis. This effect is illustrated

in Fig. 10, where the spectro-temporal signal

representation has been altered to simulate

broad-band noise bursts. These unexpected com-

ponents appear as bands in the present data

mask and hence disrupt the standard missing data
fragments employed in the experiments described in Section 3.



Fig. 10. An example of the speech fragment decoder system performance when applied to data corrupted by artificial transients (see

text).
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recognition technique (�1159� is recognised as

�81o85898�). The third image in the figure shows

how the mask is now dissected before being

passed into the speech fragment decoder. The

final panel shows a backtrace of the fragments that

the speech fragment decoder marks as present in

the winning hypothesis. We see that the noise

pulse fragments have been dropped (i.e. relabelled
as �background�). Recognition performance is now

much improved (�1159� is recognised as �81159�).
Fig. 11 shows a further example with a different

pattern of artificial noise—a series of chirps—im-

posed upon the same utterance. Again, noise con-
taminated fragments are mostly placed into the

background by the decoder.

3.3. Results with real noise

The examples discussed in the previous section

were artificial and the background intrusions in

the data mask were very distinct. The experiments
in this section test the technique with speech mixed

with factory noise taken from the NOISEX corpus

(Varga et al., 1992).

Fig. 12 compares the performance of the speech

fragment decoding technique with that of a recog-



Fig. 11. Another example of the speech fragment decoding for data corrupted with artificial chirps.
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Fig. 12. Recognition results for a baseline MFCC system, a

missing data system, and the speech fragment decoder system.

The �a priori� line represents results that are potentially

achievable if the speech can be perfectly segregated from the

noise.
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niser using the stationary SNR-based speech/back-

ground segregation in conjunction with missing

data techniques.

It can be seen that speech fragment decoding

provides a significant improvement at the lower

SNRs, e.g. at 5dB recognition accuracy is im-

proved from 70.1% to 78.1%—a word-error rate

reduction from 29.9% to 21.9%, or 26.7% relative.
Also shown on the graph are results using a

traditional MFCC system with 13 cepstral co-

efficients, deltas and accelerations, and cepstral

mean normalisation (labelled MFCC + CMN).

This demonstrates that the speech fragment decod-

ing technique is providing an improvement over a

missing data system that is already robust by the

standards of traditional techniques.

3.4. Discussion

The results in Fig. 12 labelled �a priori� show the

performance achieved using missing data tech-

niques if prior knowledge of the noise is used to

create a perfect local SNR mask. Even using the

speech fragment decoding technique results fall
far short of this upper limit as the noise level rises

above 10dB SNR.

One possible cause of this this significant per-

formance gap is that the fragments supplied to

the speech fragment decoder are not sufficiently
coherent. In this work we have used a simple set

of fragments generated by aggregating high energy
regions in the SNR mask. If the noise and speech

sources occupy adjoining spectro-temporal regions

this technique will not be able to separate them.

This is evident is Figs. 10 and 11 where, as a result

of both noise and speech being mixed in the

same fragment, much clean speech energy has been
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removed from the masks and some of the noise en-

ergy has survived.

The artificial examples highlight that the success

of the system is strongly dependent on the quality

of the segregation model. By producing incoherent
fragments, the segregation model limits the per-

formance of the recogniser as it has effectively

made hard decisions that cannot be undone at a

later stage. Of course, the coherence of the frag-

ments can be easily increased by splitting them

into smaller and smaller pieces. At the extreme

each fragment may contain a single spectro-tem-

poral pixel which by definition must be coherent.
However, over zealous fragmentation also has

undesirable consequences. First, it greatly in-

creases the size of the segregation search space

and hence increases the computational cost of

the decoding process. Second, it weakens the con-

straints imposed by the segregation model. If there

are a very large number of small fragments, the de-

coder is more able to construct spurious speech
descriptions by piecing together spectro-temporal

pieces from the collection of sound sources

present.
4. Discussion

In this paper we have laid the foundation for a
statistical approach to computational auditory

scene analysis. In the sections that follow, we dis-

cuss some of the issues that have arisen with our

current implementation and suggest some possible

future research directions.

4.1. Improvements to fragment generation

The fragments in the current system rely on a

very simple and crude model—mainly that energy

below an estimate �noise floor� is to be ignored,

and the remainder can be divided up according

to some simple heuristics. It is likely that more

powerful fragmentation techniques will result in

significant performance gains. In general, one

can imagine a two-phase process in which cues
for auditory grouping (as listed, for example, in

Bregman, 1990, and Table 1 of Cooke and Ellis,

2001) are applied to aggregate auditory filter out-
puts across time and frequency, followed by the

application of segregation principles which serve

to split the newly-formed regions. In contrast with

earlier approaches to grouping and segregation,

such a strategy can afford to be conservative in
its application of grouping principles, since some

of the work of aggregation can be left to the de-

coder. In fact, since any groups formed at this

stage cannot later be split, it is essential that

any hard-and-fast decisions are based on reliable

cues for grouping. In practice, this can be

achieved both by adopting more stringent criteria

for incorporation of time-frequency regions into
groups and by weakening criteria for the splitting

of groups.

For instance, within the regions currently

marked as �voiced�, subband periodicity measures

could indicate whether frequency channels appear

to be excited by a single voice, or whether multiple

pitches suggest the division of the spectrum into

multiple voices (as in Brown and Cooke, 1994).
Sudden increases in energy within a single frag-

ment should also precipitate a division, on the

basis that this is strong evidence of a new sound

source appearing.

The application of stricter grouping criteria

may appear to result in a loss of valuable informa-

tion about which regions are likely to belong to-

gether. However, we show in the following
section that such information can be employed

during the decoding stage.

4.2. Statistical versus ruled-based segregation

models

The speech fragment decoding theory is ex-

pressed in terms of a statistical segregation model.
However, the primitive grouping principles de-

scribed in the previous section have tended to be

modelled by essentially rule-based systems and

have previously lacked a clear statistical footing.

Psychoacousticians have set out to look for group-

ing rules using reductionist approaches—essen-

tially by studying the percepts generated by

highly simplified acoustic stimuli. Rule-based
models that rely on a small sets of parameters

can be hand tuned to fit such empirical psycho-

acoustic data.



6 That is to say that between-fragment grouping probabil-

ities are included for interactions between the fragment that is

ending and each fragment that overlaps a window that extends

back T frames before the fragment ended.
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An alternative approach, is to build a statistical

segregation model from labelled noisy data. Labels

can be attached to the noisy acoustic data if the

contributions of the individual sources are known

prior to mixing. A corpus of synthetic sound
scenes could be used to achieve this aim.

4.3. Between-fragment grouping

Psychoacoustic experiments provide evidence

that weak grouping effects may exist between the

tightly bound local spectro-temporal fragments.

For example, a sequence of tonal elements are more
likely to be perceived as emanating from the same

sound source if they have similar frequencies (Van

Noorden, 1975). These grouping effects may allow

a fragment to have an influence on the evolving

source interpretation that spans over a considerable

temporal window. However, such between-frag-

ment grouping effects have a probabilistic nature

and their influence can be overcome by learned
patterns, such as musical melody (Hartmann and

Johnson, 1991) or speech (Culling andDarwin, 1993).

Between-fragment grouping effects may be best

modelled as soft biases rather than hard and fast

rules. One approach would be to estimate prior

probabilities of the segregation hypotheses accord-

ing to various distance measures between the frag-

ments composing the sources that the segregation
describes. A suitable distance measure may be

based on the similarity of a vector of fragment

properties such as mean frequency, spectral shape,

spatial location, mean energy. The posterior prob-

ability of pairs of fragments belonging to the same

source given their properties could then be learnt

using training data employing a priori fragments

similar to those used in Section 2.4. Such probabil-
ities could be added into the segregation model by

appropriately adjusting the scores for each evolv-

ing segregation hypotheses as each new fragment

is considered by the decoding process.

When including long term between-fragment

grouping probabilities into the segregation model

some care has to be taken with the speech fragment

decoding algorithm to ensure that the Markov
property is preserved and that the segregation/

word-sequence search remains admissible. In the

version of the algorithm described in Section 2.2,
decisions about the best labelling of a fragment

are made at the instant at which the fragment off-

sets. However, allowing for between-fragment ef-

fects, it is not possible to know at this time point

how the labelling of the present fragment will influ-
ence the labelling of fragments occurring in the fu-

ture. This problem can be overcome by first

limiting the temporal extent of the between-frag-

ment grouping effects to a fixed number of frames,

say T,6 and second, delaying the decision over how

to label a given fragment until the decoder has

passed the offset of the fragment by T frames.

Note that the delay in fragment labelling deci-
sions necessitated by between-fragment grouping

effects will mean that there are on average more ac-

tive hypotheses at any instant. The growth in the

number of hypotheses will in general be an expo-

nential function of the length of the delay which,

in turn, has to be the same duration as the extent of

the temporal influence between fragments. Conse-

quently, there is a trade-off between the temporal
extent of the between-fragment grouping influ-

ences and the size of the segregation search space

(and hence computational cost of the decoding

procedure).

4.4. Approximating P(X)

In Eq. (12), we factored the ratio of the likeli-
hood of the speech features conditioned on segre-

gation and mask to their prior values by

essentially assuming their values were independent

at each time step i, i.e. we took:

PðX jS;YÞ
P ðXÞ ¼

Y
i

PðxijS;YÞ
P ðxiÞ

: ð23Þ

This independence assumption is certainly

incorrect, but difficult to avoid in practical sys-

tems. We note, however, that depending on how

P(xijS,Y)/P(xi) is calculated, the ratio may be rea-
sonable even when the numerator and denomina-

tor include systematic error factors, as long as

those factors are similar.
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A second weak point is our model for the prior

distribution of individual speech feature elements

at a single time frame, P(xj), as uniform between

zero and some global constant xmax. It would be

relatively simple to improve this, e.g. by using indi-
vidual single-Gaussian models of the prior distri-

bution of features in each dimension. Since this

applies only to the clean speech features X rather

than to the unpredictable noisy observations Y,
we already have the training data we need.

4.5. Three-way labelling of time-frequency cells

Although the primary purpose of the current

system is to decide which time-frequency pixels

can be used as evidence for the target voice, we

note that there is actually a three-way classifica-

tion occurring, firstly between stationary back-

ground and foreground (by the initial noise

estimation stage), then of the foreground energy

into speech and non-speech fragments (by the
decoding process). This special status of the sta-

tionary background is not strictly necessary—

those regions could be included in the search,

and would presumably always be labelled as

non-speech—but it may reveal something more

profound about sound perception in general. Just

as it is convenient and efficient to identify and dis-

card the �background roar� as the first processing
stage in this system, perhaps biological auditory

systems perform an analogous process of system-

atically ignoring energy below a slowly varying

threshold.

4.6. Computational complexity

In the Aurora experiments, the number of frag-
ments per utterance often exceeded 100. However,

as illustrated in Fig. 8(G), the maximum number

of simultaneous fragments was never greater than

10 and the average number of hypotheses per

frame computed over the full test set was below

4. Although the decoder is evaluating on average

roughly four times as many hypotheses as a stand-

ard missing data decoder, much of the probability
calculation may be shared between hypotheses and

hence the computational load is increased by a

much smaller factor.
4.7. Decoding multiple sources

A natural future extension would be to search

for fits across multiple simultaneous models, possi-

bly permitting the recognition of both voices in
simultaneous speech. This resembles the ideas of

HMM decomposition (Varga and Moore, 1990;

Gales and Young, 1993). However, because each

�coherent fragment� is assumed to correspond to

only a single source, the likelihood evaluation is

greatly simplified. The arguments about the rela-

tionship between large, coherent fragments and

search efficiency remain unchanged.
5. Conclusion

We have presented a statistical foundation to

computational auditory scene analysis, and devel-

oped from this framework an approach to recog-

nising speech in the presence of other sound
sources that combines (i) a bottom up processing

stage to produce a set of source fragments, with

(ii) a top-down search which, given models of

clean speech, uses missing data recognition tech-

niques to find the most likely combination of

source speech/background labelling and speech

model sequence. Preliminary ASR experiments

show that the system can produce recognition per-
formance improvements even with a simplistic

implementation of the bottom-up processing. We

believe that through the application of more

sophisticated CASA-style sound source organisa-

tion techniques, we will be able to improve the

quality of the fragments fed to the top-down

search and further improve the performance of

the system.
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