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SUMMARY: The extent to which language learners hear non-native sounds in terms of native categories depends in part
on acoustic and auditory similarities between the two sets of sounds. One unresolved issue is the choice of parameter
space in which similarity should be measured. The current paper demonstrates the application of an unsupervised, corpus-
based, data-driven mapping technique which permits the use of rich, high-dimensional data representations, obviating the
need for prior commitment to specific low-order speech parameters such as formant frequencies. The approach, known
as generative topographic mapping, preserves the structure of the high-dimensional space while mapping to a lower-
dimensional space. We show how this low-dimensional latent space can be used for tasks such as visualising the location
of L2 consonants in an existing L1 space and measuring the effect of L2 exposure on the representation of both L2 and L1
consonants by comparison with data from a behavioural study in which Chinese listeners underwent an intensive training
regime on Spanish consonants.
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1. Introduction

Listeners learning a second language (L2) are usually
exposed to substantial quantities of foreign language
speech from instructors, educational materials, televi-
sion and radio as well as conversational partners. Since
the origin of learners’ difficulties with L2 sounds is, to
some extent, grounded in the foreign and native lan-
guage speech signals themselves, one approach to un-
derstanding the nature of L2 perception is to undertake
corpus-based studies. Further, variability due to factors
such as talker differences and articulatory context de-
mands the use of large samples of speech material. The
chief difficulty in large-scale corpus-based studies of
L2 speech perception is to find an appropriate transfor-
mation from the high-dimensional space of the signals
themselves to a representation in which sounds from the
first and second languages can be compared.

Corpus-based studies linked to powerful statistical
learning and data modelling algorithms complement
theoretical models of L2 sound acquisition (e.g. Best
1995, Flege 1995, Kuhl 1993) by generating quantita-
tive predictions of the degree to which L2 sounds will
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be difficult to acquire.
The current article applies an unsupervised statisti-

cal learning algorithm — Generative Topographic Map-
ping (GTM; Bishop et al. 1998) — to the problem of vi-
sualising and quantifying the similarity between L1 and
L2 sounds. The GTM learns a low-dimensional ‘latent’
space directly from speech data. Once the latent space
for the L1 sounds is constructed it is possible to answer
such questions as: (i) what is the spatial structure of L2
sounds in the L1 space? (ii) how does the relationship
between L1 and L2 sounds change as a response to in-
creasing exposure to L2 sounds? and (iii) how do the
locations of L1 sounds themselves change as a result
of L2 sound exposure? These questions relate directly
to three main issues of L2 sound acquisition, namely
L1/L2 assimilation, L2 categorisation and L1 attrition.
In addition to visualisation, the latent space of the GTM
can be used to generate quantitative predictions by, for
instance, computing distances between centroids repre-
senting the locations of L1 and L2 sounds in the net-
work.

Section 2 reviews earlier corpus-based approaches
in both first and second language acquisition. Sec-
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tion 3 describes the Generative Topographic Mapping
technique employed to construct the latent space of L1
sounds. The remainder of the article describes the out-
come of an experimental investigation into the repre-
sentation of Spanish sounds in a latent space of Chinese
sounds.

2. Corpus-based studies in L1 and L2 sound acqui-
sition

2. 1 Modelling L1 sound acquisition
Native perception studies have employed corpus-

based computational and statistical modelling tech-
niques, particularly in investigations of the native lan-
guage perceptual magnet effect and native category for-
mation (Kuhl 1993). For example, Iverson and Kuhl
(1996) used multidimensional scaling to process lis-
teners’ identification and goodness rating data, and
demonstrated a clear perceptual magnet effect, that is,
a shrinking perceptual space near category prototypes
and a stretching near category boundaries. A study
by de Boer and Kuhl (2003) extracted vowel formant
information from the words produced by care-givers
and used them as input to a Gaussian Mixture Model
(GMM) to simulate infant acquisition of native pho-
netic categories from the ambient language environ-
ment. Vallabha et al. (2007) used F1, F2 and duration
information derived from mothers’ naturally-produced
speech to create Gaussian models for different vowels,
and used these models to generate a large amount of
training data tokens for their online mixture estimation
model of infants’ native vowel category formation. The
learning process used in this model can acquire vowel
categories on a token-by-token base, a method more
similar to the everyday situation facing infants when
acquiring categories utterance-by-utterance from care-
givers.

Many of the modelling studies cited above are based
on the parametric GMM framework, but other stud-
ies have attempted to explore the underlying mecha-
nisms of categorical learning through artificial neural-
network techniques. For example, Guenther and Gjaja
(1996) adopted the Self-Organizing Map (SOM; Ko-
honen 1988) to simulate vowel space formation and
other aspects of the native perceptual magnet effect,
based on formant information from vowel and conso-
nant categories. Vallabha et al. (2007) also proposed
an alternative neural-network version of their model.
Salminen et al. (2009) used a self-organized network
which employed the Hebbian learning rule (Hebb 1949)
to model the warping of perceptual space associated

with categorical perception. The input data of Salmi-
nen et al. (2009) were synthesized vowel sounds pro-
cessed through a model of the auditory periphery, un-
like the self-organising model of vowel category acqui-
sition described in Miyazawa et al. (2010) which used
mel-frequency cepstral coefficient (MFCC) vectors de-
rived from natural continuous speech.

2. 2 Modelling L2 sound acquisition
Corpus-based computational and statistical tech-

niques have also been employed in non-native speech
perception studies. For example, Strange et al. (2004)
adopted a linear discriminant analysis approach (LDA;
Klecka 1980) to measure acoustic similarities between
American English and North German vowels, using the
formant values F1, F1 and F3 extracted from speech to-
kens in isolated citation forms and in sentence context.
Morrison (2006) extended LDA to a canonical discrimi-
nant function analysis approach (CDFA; Johnson 1998,
Tatsuoka 1970) to model how Spanish and English lis-
teners perceive vowels in each other’s language. One
important merit of the CDFA technique — shared with
the GTM approach we describe below — is the abil-
ity to map the characteristics of the data from a high
dimensional acoustic space to a lower dimensional rep-
resentation, thereby providing the possibility of visu-
alisation. Specifically, Morrison (2006) mapped from a
5-dimensional data space (F1, F2, Δ F1, Δ F2, duration)
to a 2-dimensional visualisation space.

A similar statistical pattern recognition technique
was applied by Thomson et al. (2009) in their cross-
language modelling study aimed at measuring the simi-
larity between Mandarin and English vowels using for-
mant information. Thomson et al. (2009) built recog-
nition models for both Mandarin and English vowels
based on LDA, placing them in competition with each
other during the recognition phase. The distribution of
recognition percentages between the competing mod-
els was used to construct an index of the similarities
between the vowel categories that those models resem-
bled. By taking the a posteriori probability1) obtained
from the LDA as a simulation of the goodness of fit
scores, the model of Thomson et al. (2009) can simu-
late behavioural responses in cross-language assimila-
tion tasks.

Computational approaches also have been used in
studies of the development of L2 perception. Escud-
ero et al. (2007) used machine learning algorithms (k-
nearest neighbour, naive Bayes classifier) and compu-
tational linguistic models (the gradual learning algo-
rithm) to simulate and visualise the evolution of learn-
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ers’ L2 vowel spaces, based on learners’ category per-
ceptual data for synthetic stimuli. Hidden Markov mod-
elling techniques were adopted by Gong et al. (2011a)
in a modelling study investigating the effect of very lim-
ited amounts of exposure on learning L2 consonants,
using MFCC-based acoustic feature representations de-
rived from natural speech data.

3. Generative topographic mapping

Generative topographic mapping (Bishop et al. 1998)
creates probability density models in a low-dimensional
latent space and maps them to the high-dimensional
observational data space via a smooth mapping func-
tion (e.g. a radial basis functions2) network; Broom-
head and Lowe 1988). The GTM approach is mo-
tivated by similar concerns as those that led to the
SOM (Kohonen 1988), namely unsupervised learning
from large datasets resulting in a projection to a lower-
dimensionality space for ease of visualisation. How-
ever, adaptation in the SOM is driven by heuristics
rather than statistical learning considerations, and lacks,
for example, a principled basis for the choice of learn-
ing rate and neighbourhood functions3). The param-
eters of the density models in the GTM latent space
can be estimated and optimised by measuring the pa-
rameters of the density models in the high-dimensional
data space through the expectation-maximisation (EM)
algorithm4) (Dempster et al. 1977). In this way the
topographic characteristics of the data in the high-
dimensional space can be learned and preserved in the
lower dimensional latent space, where their interpreta-
tion is more tractable.

It is the ability to visualise the low-dimensionality
‘intrinsic’ features that characterise consonants in a
given language that motivates the use of the GTM as
an analysis tool in second language studies. It is also
feasible to examine the evolution of the space with in-
creasing amounts of L2 input. Further, the GTM proce-
dure is wholly data-driven (i.e. unsupervised) and hence
requires no category labels for the observations which
form the input to the algorithm. Portions of the la-
tent space receive category labels only after learning
is complete. This feature permits the examination of
the role of pure acoustic similarity between L1 and L2
sounds without top-down influences such as phoneme
categories or orthography. A further benefit of the un-
supervised approach is in allowing the use of large unla-
belled speech corpora, although labels are required for
a fraction of the corpus in order to interpret the space
following learning, as described below.

The application of the GTM technique to the rep-
resentation of L2 consonants in L1 space proceeds as
follows. First, the latent space for the L1 consonants
is constructed using the GTM algorithm from a large
collection of speech parameter vectors. Second, the to-
pography of the latent space is visualised by examining
the response probabilities at each location in the space
for a subset of labelled L1 consonants. The result is a
map (usually restricted to 2 or 3 dimensions) showing
both the location and extent of each consonant in the
latent space. Once the L1 space has been mapped, the
locations of L2 consonants can be plotted using their
response probabilities, revealing the purely acoustic re-
lationship between L1 and L2 sounds. The GTM con-
struction procedure can be repeated using the original
L1 consonant set along with increasing amounts of L2
input to simulate the effect of increasing exposure, and
the locations of both L1 and L2 consonants within the
new latent space are examined.

4. Application of the GTM to localising Spanish
sounds in Chinese consonant space

This section illustrates the GTM procedure for the
case of situating (i.e. acquiring by exposure) Spanish
consonants in the latent space of Chinese consonants.
This language pairing was chosen due to the availabil-
ity of speech corpora of comparable size and acoustic
context for both Spanish and Chinese, as well as the
existence of behavioural results on Chinese assimila-
tion and categorisation of Spanish consonants (Gong
2013). Further, Chinese and Spanish are the two most-
spoken languages by native talkers and exhibit large
differences in their phoneme inventories and realisa-
tions. For example, the plosives are contrasted by aspi-
ration in Chinese and voicing in Spanish; Chinese has a
large affricate inventory compared to the single affricate
phoneme in Spanish; and the well-known liquid diffi-
culties experienced by Chinese listeners with languages
such as English are compounded by the presence of two
‘r’ sounds, the tap /�/ and the trill /r/, both different real-
isations from the Chinese apical post-alveolar approxi-
mant /��/.

4. 1 Corpora
Naturally-produced VCV tokens in both Mandarin

Chinese and Spanish were used to construct and eval-
uate the mapping created using GTM. Chinese VCV
tokens were drawn from the corpus described in Gong
et al. (2011b). This corpus is made up of exemplars of
the 24 Chinese consonants shown in the first column
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Table 1 Chinese and Spanish consonant inventories.

Chinese Spanish

Plosive ph p th t kh k p b t d k �

Fricative f s �� � x f � s x

Affricate tsh ts ��� �� ��h �� ��

Nasal m n � m n 	

Liquid 
� l l � r

Approximant j w j

of Table 1 produced in 9 intervocalic contexts derived
from all combinations of the vowels /a, i, u/ in initial
and final vowel position. The Chinese corpus contains
a total of 3,331 VCV tokens from 17 male talkers after
removal of noisy or mis-produced tokens.

Spanish VCV tokens were taken from the corpus col-
lected for the behavioural studies described in Gong
(2013). This corpus contains the 18 Spanish consonants
shown in the second column of Table 1 in the same 9
vowel contexts as used in the Chinese VCV corpus.
A total of 3,240 tokens from 16 male speakers were
recorded for the Spanish corpus. Of these, 2,880 rep-
resent training tokens (10 exemplars of each of the 18
consonants in each of 16 sessions; see section 4. 3. 2)
and a further 360 were used for testing (20 exemplars
of each consonant).

Tokens from the two corpora were subject to identical
post-processing: down-sampling to 25 kHz, high-pass
filtering to remove energy below 50 Hz, and normalisa-
tion of RMS energy.

4. 2 Feature extraction
Only the consonant part of each VCV token was used

for modelling. The boundaries of the consonant portion
of each VCV were identified by HMM-based forced
alignment5) using HTK (Young et al. 2006). Every
10 ms a 39-dimensional feature vector was formed from
the first 12 MFCCs plus overall energy, together with
their first and second time derivatives. To accommodate
different consonant durations within the constraints of a
fixed size parameter vector, and to capture the tempo-
ral dynamics of each consonant, MFCC parameters at
frames located closest to 25, 50 and 75% of the conso-
nant interval were concatenated to form a single 117-
component feature vector per consonant token. These
observational data vectors form the input to the GTM.

4. 3 GTM training and visualisation
4. 3. 1 Learning of the L1 latent space

Since initial experiments suggested that a 2-
dimensional latent space produced too large an overlap

between consonants, a 3-dimensional GTM was con-
structed. Following pilot studies the latent space was
represented by 225 probability density model centres
or ‘nodes’ distributed randomly in the space defined by
the cube with vertices at [±1,±1,±1] centred on the ori-
gin. The radial basis function network which served
as the projection function was set to have 72 nodes in
order to obtain a smooth mapping from latent space to
data space. The Netlab GTM toolbox (Nabney 2004)
was used for model construction.

The GTM was trained on the entire Chinese cor-
pus (i.e. 3,331×117-D observation vectors) to simulate
a Chinese consonant space prior to Spanish exposure.
Fifty iterations of EM in the unsupervised GTM learn-
ing algorithm were sufficient to obtain convergence.
4. 3. 2 Simulating the effect of L2 exposure

While small quantities of L2 data seem unlikely to
cause significant disturbance to the locations of L1 con-
sonants, increasing the quantity of L2 tokens might be
expected to result in changes to the latent space con-
structed by the GTM. Putative changes might involve
a greater dispersion of L2 categories, or increased sen-
sitivity (in some latent space dimensions) to cues not
used in certain L1 distinctions. Since the L1 and L2
sound systems coexist in the same phonological space
(Flege 1995), through increased exposure to the L2
sound system, the perceptual space may change by cre-
ating new categories for some L2 sounds, particularly
if the differ noticeably from L1 categories; when that
happens, the existing L1 category may shift in the per-
ceptual space to better differentiate itself from a newly
created L2 category (dissimilation; Flege 2002). Alter-
natively, an L2 sound may get assimilated to an existing
L1 category, in which case the existing L1 category may
be modified to accommodate the L2 one (assimilation;
Flege 2002). For example, in the acquisition of Spanish
voiced plosives, Chinese learners may create new cat-
egories for these sounds with or without shifting their
native unaspirated plosives to increase their distance.
Learners could also assimilate Spanish voiced plosives
to Chinese unaspirated plosives, in which case the Chi-
nese categories might change through the influence of
the Spanish sounds they have incorporated.

In the behavioural study of Gong (2013), listeners
were trained sequentially on 16 blocks of 180 Spanish
VCV tokens made up of 10 exemplars of each conso-
nant. To simulate the effect of increasing exposure in
the GTM, an identical subdivision into blocks was em-
ployed. For each of the 16 stages of learning, all the
Spanish blocks up to that stage were added to the Chi-
nese training corpus. A further 10 iterations of EM were
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carried out to modify the GTM parameters using the
gradually-expanding training corpus. The GTM param-
eters obtained in the previous stage were used as input
parameters for the next stage of EM-based parameter
re-estimation. The pure Chinese GTM served as the in-
put for the first Spanish learning stage. In this way, the
initial Chinese GTM gradually gained both an increased
amount and more varied Spanish exposure while keep-
ing its Chinese exposure unchanged, simulating a lis-
tener’s non-native sound learning.
4. 3. 3 Visualisation of the latent space

In order to identify the locations of consonants in
the GTM latent space, the response probability at each
GTM node is computed for each labelled feature vec-
tor in the test set. Rather than choosing the most likely
node, the 3-D location of the feature vector is obtained
by multiplying the response probability matrix (i.e. the
matrix of response probabilities defined across all GTM
nodes) by the coordinate matrix of the nodes. In this
way, each labelled feature vector is mapped into a 3-D
coordinate in the latent space. This can be thought of
as representing the centre of activity in the map for that
token.

Ellipsoids are used to visualise the variability of each
individual consonant’s response distribution across all
tokens of the same consonant. Ellipsoid centres are
placed at the mean 3-D location of the responses, their
radii represent one standard deviation in each of the
three dimensions, and their 3-D orientation is computed
from the eigenvector matrix of the 3-D coordinates ma-
trix of the mean responses.

5. Results

5. 1 Consonant distribution in latent space
Figure 1 shows the spatial distribution of individual

Spanish and Chinese consonants in the Chinese GTM
before, during and after training on Spanish consonants.
In this figure colour distinguishes different manners of
articulation; ellipses representing individual consonants
are not labelled to avoid clutter (below we show projec-
tions for individual consonants from 3-D space to pairs
of dimensions).

Considering first the distribution of Chinese conso-
nants prior to exposure to Spanish (upper left panel), a
clear division exists between the sonorant consonants
(nasals and approximants) and the obstruents (plosives,
fricatives, affricates). In fact, for Chinese, the sonorant-
obstruent distinction is also a voiced-voiceless contrast,
since Chinese does not contain voiced plosives, frica-
tives or affricates. Thus, the GTM trained solely on Chi-

nese consonants seems to be sensitive to either or both
of the sonorant-obstruent and voiced-voiceless distinc-
tions.

The spatial distribution of Spanish consonants in the
Chinese GTM prior to Spanish exposure is depicted in
the upper right panel of Figure 1. The consonants are
more tightly clustered than seen for the Chinese con-
sonants, although some separation of manner classes is
evident, especially for the affricates, fricatives and plo-
sives. Note that in the Chinese GTM the liquids are not
visible as they are subsumed within the ellipsoid repre-
senting approximants.

One measure of clustering is the mean inter-
consonant distance: under this metric, the Spanish con-
sonants are 76% less well-separated than the Chinese
consonants. Comparing the locations of the Chinese
and Spanish consonants in Figure 1, the largest differ-
ence is seen for the plosives and fricatives. Addition-
ally, Chinese has a large area for approximants which
encompasses the liquids. Spanish has a specific exten-
sive area for the liquids. We provide a more detailed
comparison of individual consonants in the two lan-
guages below.

As exposure progresses (session 4; right column,
centre panel) some movement in the location of Spanish
consonants is evident, and at the termination of expo-
sure (session 16; lower right) the extent of their move-
ment is clear. In fact, the mean Spanish consonant
separation is now 6% greater than that of the Chinese
consonants following exposure. In general, the manner
classes are better separated, with the liquid grouping
emerging from the plosive cluster. A similar picture is
seen for some of the plosives which were overlapped
with the sonorants prior to training. Although not evi-
dent in the figure, it is mainly the voiceless plosives that
show the greatest movement as we will see shortly.

It is interesting to note that while the GTM response
to Spanish consonants has been affected by exposure,
the same GTM’s response to Chinese consonants shows
very little change. Specifically, following exposure to
Spanish, Chinese consonants are slightly more tightly
clustered, at 98% of their separation at the outset.

5. 2 Interpretation of GTM dimensions
The spatial separation or otherwise of responses to

individual consonants suggests that the 3-D latent space
of the GTM encodes acoustic-phonetic properties. To
better explore possible interpretations of these dimen-
sions, a series of 2-D projections of the GTM responses
can be examined.

Figure 2 plots the locations of the mean centres of
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Figure 1 Spatial distribution of activation in response to L1 and L2 consonants in the GTM.
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Figure 2 2-D projections of the mean locations of Chinese and Spanish plosives in the GTM before, during and after Span-
ish exposure. Filled circles indicate the location prior to Spanish exposure; the arrowhead shows the direction
of evolution during exposure and indicates the location at the termination of exposure.

activation of Chinese and Spanish plosives projected
on to dimensions 1 and 2 (left) and 1 and 3 (right) of
the GTM. The arrow indicates the direction of evolu-
tion from the stage prior to Spanish exposure (indicated
with filled circles), and after sessions 4, 8, 12 and 16
of exposure (indicated by changes in the gradient of
the lines). Figures 3–6 show similar plots for the af-
fricates, fricatives, nasals, and liquids/glides of the two
languages.

Some of the features highlighted in the previous sec-
tion are evident in these figures: the Spanish plosives
are located at points in the latent space distinct from the
Chinese plosives, the Spanish plosives show significant
movement as a result of exposure, while the Chinese
plosives are barely affected.

Considering first the projection on to dimensions 1
and 2 of the GTM (left panel of Figure 2) of the Chi-
nese plosives, the aspirated forms /ph, th, kh/ are clearly
separated from their unaspirated counterparts /p, t, k/
along dimension 1. The Spanish plosives, all of which
are unaspirated, have their mean centres of response at
negative values of dimension 1. This suggests that di-
mension 1 encodes in large part the aspiration feature.
Affricates and fricatives also display various degrees
of turbulent noise but this is not the case for voiced
sonorants. As we can see in Figures 3 and 4, the af-
fricates and fricatives have positive values for dimen-
sion 1, while all nasals and liquids are located at nega-
tive values (as shown in Figures 2, 5 and 6).

Figure 2 also shows that the Spanish voiced /b, d,
�/ and voiceless /p, t, k/ plosives are separated along
dimension 2, suggesting that this dimension encodes
the feature ‘continuant’ in the broad sense of the term

which includes nasals and laterals (Mielke 2005) and
reflects the fact that Spanish voiced plosives, in the in-
tervocalic context in which they were presented in this
paper, are realised as approximants. This interpreta-
tion is supported by the location of the Chinese plosives
which are all voiceless and situated in the negative part
of this axis.

The interpretation of dimension 3 for the plosives is
less clear. The location of Chinese plosives suggests
that aspiration and other noise-like speech characteris-
tics are also reflected in this dimension, but less clearly
than in dimension 1.

5. 3 Effects of exposure
Exposure has some effect on the centres of activation

for the Spanish plosives. While in the main they remain
in the same quadrants as they occupied prior to expo-
sure, they move towards the area occupied by Chinese
plosives. Initially, the Spanish voiceless plosives /p, t,
k/ were located between the Spanish voiced plosives /b,
d, �/ and the Chinese unaspirated plosives /p, t, k/ (Fig-
ure 2, left). It is clear from Figure 2 that, following
exposure, the centres of the Spanish voiceless plosives
move towards the negative half of dimension 2, becom-
ing closer to the the Chinese unaspirated plosives. Al-
though the Spanish voiced plosives (/b,�/) also showed
some movement towards the Chinese unaspirated plo-
sives, they maintained their separation in both dimen-
sions 1 and 2 from their Spanish voiceless counterparts,
again consistent with their realisation as approximants
in intervocalic contexts.

In general, the non-plosive consonants show smaller
shifts as a result of exposure. However, the Spanish
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Figure 3 As Figure 2 for the affricates.

Figure 4 As Figure 2 for the fricatives.

Figure 5 As Figure 2 for the nasals.

consonants /��/, /s/, /l/ and /r/ did change location by a
substantial amount. Spanish /��/ initially belonged to
the Chinese affricate cluster (Figure 3) but emerged fol-

lowing a similar degree of movement in the three di-
mensions. This is compatible with the creation of a dis-
tinct category for this sound.
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Figure 6 As Figure 2 for the liquids and glides.

In the case of Spanish /s/ (Figure 4), this sound ini-
tially overlaps partially with Chinese /s/ but is close to
merging with Chinese /��/. The relative locations be-
tween Chinese and Spanish consonants are to some ex-
tent consistent with the assimilation and identification
results reported in the behavioural study of Gong (2013)
discussed in the next section.

5. 4 Relationship to behavioural data
Gong (2013) described how Chinese listeners with

no previous experience of Spanish undertook an inten-
sive training regime, identifying Spanish VCVs with
feedback for incorrect responses, in 16 sessions over
4 days. Prior to and following training the same lis-
teners carried out forced-choice identification of Span-
ish VCVs and performed an assimilation task where
Spanish VCVs were classified in terms of Chinese cat-
egories. They also identified Chinese VCVs using an
adaptive noise procedure which permitted the measure-
ment of noise thresholds for the identification of indi-
vidual consonants. Listeners were exposed to the same
sequence of Spanish VCVs as used in the current study.

Gong (2013) found little evidence for attrition of Chi-
nese categories, as measured in terms of increases in
consonant reception thresholds in noise. Consistent
with the results of the behavioural experiment, the dis-
tribution of Chinese consonants in the GTM did not
change much after exposure to Spanish consonants.

Chinese listeners showed a marked and rapid im-
provement in identification of Spanish VCVs from pre-
to post-test amounting to 33 percentage points on av-
erage. The increased separation of Spanish consonants
in the GTM suggests that acoustic differences underpin
at least some of the observed gain in classification ac-
curacy. Much of the improvement in the behavioural

study took place in the first 4 sessions, with a mean
correct classification score of 46% in the pre-test ris-
ing to 74% after the fourth training session. In the
GTM the location of Spanish consonants already ex-
hibits considerable change after 4 sessions of exposure,
especially for the plosives and liquids. Nevertheless,
the rate of change of other consonants was more uni-
form as a function of exposure, suggesting that at least
some of the rapid learning exhibited in the behavioural
data is due to explicit feedback (encouraging, amongst
other things, symbol learning) — which the GTM lacks.

The relative locations of the Chinese and Spanish
consonants in the GTM reflect acoustic similarities be-
tween the two languages’ sounds, and consequently
might provide some explanations for the assimilation
patterns in the behavioural study. For example, the
Spanish voiceless plosives were located closer to the
Chinese unaspirated plosives than their voiced counter-
parts, which is consistent with the assimilation results
in Gong (2013) where the Spanish voiceless plosives
showed stronger assimilations to the Chinese unaspi-
rated plosives than did the Spanish voiced plosives. Lis-
teners assimilated the voiceless plosives to the unaspi-
rated Chinese ones very strongly ab initio while simul-
taneously providing category goodness ratings which
indicated that they could perceive differences from their
native categories, in agreement with the finding that the
GTM locates the Spanish voiceless plosives at some
distance from the Chinese unaspirated categories.

In the behavioural data, listener assimilations prior
to Spanish exposure were very dispersed for the voiced
plosives: for example, Chinese listeners categorised
Spanish /�/ as one of the four different Chinese cate-
gories /k, x, l, w/, encroaching on the space of approx-
imants and liquids (i.e. sonorants). This phenomenon
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is also visible in the GTM where the plosive area en-
compasses the sonorant area for Spanish sounds and
demonstrates that both listeners and the GTM are sensi-
tive to the fact that these sounds are actually realised as
approximants. As in the behavioural results, following
exposure the locations in the GTM of the Spanish plo-
sives are found nearer to those of the Chinese plosives.

6. Discussion

6. 1 Benefits of the GTM approach
The current study demonstrates the novel application

of an unsupervised learning algorithm to the problem
of visualising the location of L2 consonants in an exist-
ing L1 space. The GTM approach brings a number of
advantages to the modelling of L2 sound acquisition.

First, the GTM permits the use of large data corpora,
enabling, for example, the model to capture some of the
known within- and across-talker variability of speech
tokens. Further, the quantity of speech material can be
varied as we have done in order to simulate the effects
of exposure.

Second, in contrast with supervised approaches such
as Escudero et al. (2007) and Gong et al. (2011a), the
GTM does not require a prior choice of L1 or L2 cate-
gories during learning; instead, the model can be con-
sidered as operating within the domain of acoustic sim-
ilarity without the influence of category labels. Of
course, we acknowledge that category labels and indeed
orthography can affect category judgements (e.g. Gong
et al. 2011b), but we see the GTM as a technique for ex-
ploring the pure acoustic similarity component of per-
ceptual decision making for L2 sounds rather than as a
complete model of L2 sound processing. In this sense
the GTM has the potential to provide additional insights
in understanding L2 speech perception.

Finally, the technique operates within a flexible sta-
tistical learning framework whose goal is to preserve
similarity in the observation space and to map it to a
lower-dimensional space in which visualisation is fea-
sible. The ability to handle high-dimensional acous-
tic representations of speech removes the need to com-
mit to lower-dimensional derived representations such
as formant frequencies, and further enables the explo-
ration of alternative speech feature vectors of arbitrary
dimensionality such as those produced by models of the
auditory periphery.

6. 2 Limitations
Nevertheless, the GTM approach has a number of

limitations. In practice, the mapping to latent space is

limited to 3 or fewer dimensions due to the demands of
visualisation. This limitation is shared with other ap-
proaches such as SOM and CDFA mentioned earlier,
where a commitment to a fixed visualisation space di-
mensionality is required. Whether the number of di-
mensions is optimal for the representation and analysis
of L1 and L2 sounds is not clear. A further shortcoming
of the method is in the handling of temporal dynamics.
In the current study we handle temporal change implic-
itly in two ways: the first and second time derivatives of
the spectral representation are encoded, and the feature
vector is sampled at three equally-spaced points in each
consonant segment.

The current study did not investigate any effect of the
choice of acoustic features on the form of the latent
space. It is possible that features derived from more
detailed simulations of perceptual processing in the au-
ditory periphery might affect the relative locations of
first and second langauge consonants. The study also
employed data from male talkers only. Inclusion of fe-
male speech data might benefit from a stage of vocal
tract length normalisation during feature extraction.

7. Conclusions

The current study applies generative topographic
mapping to the problem of representing second lan-
guage sounds in first language space in the context of
Spanish and Chinese VCV sequences. By encoding
acoustic-phonetic properties of L1 and L2 sounds in a
common low-dimensional space, the GTM is a promis-
ing analysis tool for investigating how L1/L2 differ-
ences affect a learner’s L2 perception, while the ability
to vary the amount of training data enables simulation-
based studies of L2 perceptual development through ex-
posure. Using the location of Spanish intervocalic con-
sonants in a space constructed from Chinese intervo-
calic consonants as a test-bed for the GTM technique,
some similarities with behavioural data on assimila-
tions is evident. Further, the GTM successfully predicts
the effect of exposure to Spanish consonants by increas-
ing the separation of clusters representing the Spanish
sounds while having very little effect on existing Chi-
nese sound clusters.

Notes

1) A posteriori probability: The probability of a hypothesis
after taking into account the observed evidence.

2) A radial basis function is a function (e.g. a Gaussian)
whose value depends solely on distance from a given point.
A radial basis function network is a form of artificial neu-
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ral network containing radial basis functions as activation
functions.

3) Neighbourhood function: A mathematical function that
takes inputs from neighbouring nodes in a network. For ex-
ample, in the context of the Self-Organising Map (SOM)
the neighbourhood function might take the form of a Gaus-
sian that defined the variation of weights with distance
from any given node.

4) EM algorithm: The expectation-maximization (EM) al-
gorithm is a method for generating the maximum likehood
estimate of the parameters of a statistical model. EM is
an iterative algorithm that alternates between two steps.
The first computes the expected value of the data likeli-
hood function using current parameter values. The second
finds new parameter estimates that maximise the expected
likelihood.

5) Forced alignment is the process of locating specific time
points in the speech signal that correspond to boundaries in
a text transcription. In general alignment (e.g. during auto-
matic speech recognition), the text is unknown. In forced
alignment the text is known.

6) Latent variables and latent space. Latent variables are
those that are not directly observed but are instead inferred
via a model from observed variables. For example, latent
variables might correspond to articulatory positions which
have to be inferred from acoustic measurements. Latent
space refers to the collective dimensions of latent variables
(e.g., tongue height plus lip-rounding).
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