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Abstract

This study compared behavioural performance on a multispeaker speech-in-noise
task with that of a model inspired by automatic speech recognition techniques.
Listeners identified 3 keywords in simple 6-word sentences in speech-shaped noise
spoken by one of 18 male or 16 female speakers. An across-speaker analysis of a
number of acoustic parameters (vocal tract length, mean fundamental frequency
and speaking rate) found none to be consistently good predictors of relative intel-
ligibility. A simple measure of degree of energetic masking was a good predictor of
female speech intelligibility, especially in high noise conditions, but failed to account
for interspeaker differences for the male group. A glimpsing model, which combined
a simulation of energetic masking with speaker-dependent statistical models, pro-
duced recognition scores which were fitted to the behavioural data pooled across
all speakers. Using a single set of speaker-independent, noise-level-indepedent pa-
rameters, the model was able to predict not only the intelligibility of individual
speakers to a remarkable degree, but could also account for most of the token-wise
intelligibilities of the letter keywords. The fit was particularly good in high noise
conditions.

1 Introduction

It is common experience that in noisy situations some speakers are consistently
more intelligible than others. A large degree of variation in inter-speaker in-
telligibility persists even if the signal to noise ratio (SNR) is similar across
speakers. The joint behavioural-modelling study described in this paper at-
tempts to account for relative speaker intelligibility of utterances mixed with
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stationary noise by combining models of energetic masking and speaker acous-
tics.

Previous studies of speaker intelligibility have focused on clean speech and
typically examined a range of speakers, comparing those speakers that are
‘intrinsically clear’ with those that are less intelligible. Such studies attempt
to identify a small set of acoustic parameters which can best predict relative
speaker intelligibility. For example, in a study of intrinsically clear speech,
Bond and Moore (1994) found intelligibility to be related to duration cues,
the geometry of the vowel space and cues to consonant discrimination. Bradlow
et al. (1996) also demonstrated an effect vowel space size and an additional
effect of F0 range. In a more recent study involving a larger number of speakers,
Hazan and Markham (2004) found that word intelligibility was significantly
correlated with word duration and energy in the 1 to 3 kHz region, and that
female speakers had a higher intelligibility than male speakers. However, if
intelligibility is related to acoustic-phonetic characteristics, the relation is not
simple – previous studies have all found great variability in the profile of the
clearest speakers.

Another body of work contrasts casual speech with speech produced in a delib-
erately clear manner (‘clear speech’, Picheny et al., 1985). The most consistent
clear speech effect is a reduction in speech rate (Picheny et al., 1985, 1986).
Krause and Braida (2004) controlled for speaking rate by using speakers who
could produce clear speech at normal speaking rates and found that that clear
speech had increased energy in the 1 to 3 kHz range. At least in this respect,
deliberately clear speech is similar to intrinsically clear speech.

The current work differs from these earlier studies in that it focuses on speech
in noise. Noise introduces masking and the resulting intelligibility will be in-
fluenced by both intrinsic intelligibility and the speech-masker relationship.
Intrinsically clear speakers are not necessarily the most intelligible in noisy
conditions. Indeed, characteristics that produce noise robustness might have
an adverse effect on intrinsic intelligibility. Most previous studies of speech in
noise have examined the largely involuntary way in which speakers adapt their
speaking style in adverse environments, the so-called Lombard effect. Acoustic
analyses made by van Summers et al. (1988) and Junqua (1993) have shown
that there is an increase in amplitude, changes to formant frequency and band-
width, a change in spectral tilt and an increase in duration. Lombard speech
differs acoustically from deliberately clear speech (van Summers et al., 1988).
Our study does not consider the Lombard effect, but instead artificially mixes
noise with speech recorded in clean conditions.

Noise reduces the intelligibility of speech due to two types of masking – ‘en-
ergetic’ and ‘informational’. Energetic masking occurs in the periphery of the
auditory system when the noise energy is greater than the speech energy in
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some spectro-temporal region. The loss of information may reduce the discrim-
inability between speech classes by masking important speech features. The
same noise sample will not necessarily affect the intelligibility of all speakers
equally. For instance, speakers with a peakier long term spectrum may, on av-
erage, be more resilient to energetic masking. Clearly, the greater the extent
of energetic masking, the bigger the reduction in intelligibility. More subtly,
the same degree of masking – measured in terms of spectro-temporal propor-
tion masked – may have greater or lesser impact on intelligibility depending
on where the masking occurs in relation to key features of the speech signal.
These effects will be speaker dependent – heavy masking in a given frequency
region may be more damaging to one speaker than another. For example, vo-
cal tract length differences alter average formant frequencies, so a masker with
energy at a frequency that occludes the second formant of one speaker, may,
on average, fall harmlessly in the gap between two formants for another.

Unlike energetic masking, the effects of informational masking result from tar-
get and masker competition in more central portions of the auditory system
(Durlach et al., 2003). For example, if there is a competing speaker present,
listeners may experience difficulty focusing attention on the target speaker. In
a series of simultaneous speaker intelligibility studies (Brungart, 2001; Brun-
gart et al., 2001), Brungart and colleagues demonstrated that speech is more
effectively masked by speech of the same gender, and that using the same
speaker for both the target and masker produces an even greater masking
effect. When the target and masker have the same level, the effect of informa-
tional masking is greatest. Here, we focus on energetic masking by employing
stationary noise maskers that are not readily confusable with speech.

The current study explores the use of statistical modelling techniques adopted
from automatic speech recognition (ASR) in the estimation of speaker intel-
ligibility. Considering intelligibility from an ASR perspective, it is commonly
observed that some speakers can use ASR systems with more ease than others.
ASR systems are typically trained using data from a large number of speak-
ers with the hope that the acoustic models produced will generalise to the
unknown speaker attempting to use the system. Typically, adaptation tech-
niques are then used to minimise error due to mismatch between the user
and the learnt acoustic models (Woodland, 2001). However, ASR systems em-
ploying speaker adaptation are not good models for speaker intelligibility –
for example, they can fail badly on non-native speech that humans may find
highly intelligible (van Compernolle, 2001). In the current work, we use large
amounts of speech from individual speakers to train speaker-specific models to
avoid speaker adaptation issues. ASR systems also differ from humans in the
way they respond to additive noise. Even when using speaker-specific acoustic
models, it cannot be expected that ASR recognition results for a set of speakers
in high levels of noise will correlate with human judgements of intelligibility.
To produce more human-like results, ASR systems need to be adapted to base
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their decisions on the portions of the speech signal that are not energetically
masked.

In this paper we attempt to account for the variability in speaker intelligibil-
ity using a glimpsing model of speech perception (Cooke, 2006) which is built
on statistical modelling techniques employed in ASR. This model takes the
view that listeners process noisy speech by taking advantage of “glimpses” –
spectro-temporal regions – in which the target is least affected by the back-
ground. The model uses missing data speech recognition techniques (Cooke
et al., 2001) to predict the response of listeners to the noisy speech on a token
by token basis. Estimates of intelligibility are made from the output of the
adapted ASR system averaged over a large number of utterances. We charac-
terise the model as being ‘microscopic’ as the underlying ASR system predicts
responses to individual tokens – a feature that it shares with earlier models
such as those of Ghitza (1993), Ainsworth and Meyer (1994) and Holube and
Kollmeier (1996). Microscopic models contrast with ‘macroscopic’ models of
intelligibility – such as the Articulation Index (Fletcher and Galt, 1950), the
Speech Transmission Index (Steeneken and Houtgast, 1980) and the speech
recognition sensitivity model (Musch and Buus, 2001) – which predict intel-
ligibility without employing detailed acoustic models of speech, and without
predicting listeners’ detailed response to each utterance. Macroscopic models
are based on long term statistics of the speech and noise, and they work to
the extent that errors caused by smoothing out the detail do not cause bias
when averaged over the material in the intelligibility test. Microscopic mod-
els have the potential to make more accurate estimates of intelligibility, but
their evaluation requires a corpus that is both carefully controlled (and thus
suitable for measuring intelligibility), and that has large amounts of data for
each speaker (making it suitable for training statistical speech models). The
current study has been made possible by the recent release of the Grid corpus
(Cooke et al., submitted) which is further described in Section 2.2.

As well as providing a model of relative speaker intelligibility, the current study
may be viewed as a test of the glimpsing model of speech perception. If the
glimpsing model is a poor fit of the data then the intelligibility judgements are
unlikely to be accurate. In Cooke (2006), the model was tested using a corpus
of isolated vowel-consonant-vowel tokens collected by Shannon et al. (1999).
A test set using 160 items from just 5 male speakers was used. In contrast, the
Grid corpus employed in the current study is composed of connected 6-word
utterances constructed from a vocabulary of 47 words, spoken by 34 different
speakers of both genders. Crucially, there is sufficient training data to build
speaker-specific acoustic models. The more natural style of the speech material,
and increased perplexity of the recognition task provides a more stringent test
of the glimpsing account.

The remainder of the paper is structured as follows. Section 2 describes the
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listening tests that were conducted to estimate the intelligibility of the 34 Grid
speakers in stationary noise conditions over a range of signal to noise ratios.
Section 3 describes the acoustic analysis of the Grid speakers. Measurements
are made of the degree to which simple acoustic parameters can predict speaker
intelligibility. Section 4 applies the glimpsing model to estimate the degree
of masking for each speaker at each noise level and examines the degree to
which relative intelligibility can be explained in terms of masking in isolation
from acoustic models of individual speakers. Section 5 presents the full ASR-
based model and looks in detail at the extent to which it agrees with human
intelligibility judgements.

2 Listening tests

2.1 Participants

Twenty native speakers of British English participated in the study. Listeners
were students and staff at the University of Sheffield whose age ranged from
20 to 43 years (mean: 26.1 years, s.d. = 6.9). Students were paid for their
participation. All listeners were screened for hearing loss (better than 20 dB
hearing level in the range 250 – 8000 Hz). Ethics permission was obtained
following the University of Sheffield Ethics Procedure.

2.2 Speech and noise materials

Sentences were drawn from the Grid corpus (Cooke et al., submitted) which
provides common speech material for studies in speech perception and au-
tomatic speech recognition. Thirty four speakers (18 males and 16 females)
provided 1,000 utterances each, producing a total of 34,000 sentences suitable
for both intelligibility testing and for training automatic speech recognisers.
Sentences in the Grid corpus are simple 6 word utterances such as “put red at
X 4 now” and “set green with J 9 again”. Sentences have a fixed syntax. Items
in positions 2 (colour), 4 (letter) and 5 (digit) act as keywords to be identified.
In Grid, the 4 colour choices are “red”, “green”, “blue” and “white”, while
25 letters from the English alphabet are available (“W” is excluded due to its
multisyllabicity) as are the 10 digits from “zero” to “nine” (see Table 1).

Speech-shaped noise whose spectrum matched the long-term spectrum of the
entire Grid corpus was added to utterances at 11 SNRs: 6, 4, 2, 0, -2, -4, -6, -8,
-10, -12 and -14 dB. These SNRs were chosen based on the results of a pilot
experiment to cover the full intelligibility range. All utterances had initial and
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Table 1
Structure of sentences in Grid corpus.

VERB COLOUR PREP. LETTER DIGIT ADVERB

bin blue at a-z 1-9 again

lay green by (no ‘w’) and zero now

place red on please

set white with soon

final silence removed prior to the addition of the noise. An additional condition
consisted of sentences presented without noise. For each of the 12 conditions
and for each of the 20 listeners, an independent block of 100 utterances was
drawn at random, without replacement, from the Grid corpus. Consequently,
a total of 20 x 12 x 100 = 24,000 Grid utterances were used in this study.

2.3 Procedure

Listeners were tested individually in an IAC single-walled acoustically-isolated
booth. Stimulus presentation and response collection was under computer con-
trol. Noisy utterances were scaled to produce a presentation level of approxi-
mately 68 dB SPL and were presented diotically over Sennheiser HD250 head-
phones. Listeners were asked to identify the colour, letter and digit spoken
and entered their results using a conventional computer keyboard in which 4
of the non-letter/digit keys were marked with coloured stickers. Those keys
representing colours were activated immediately following the onset of each
utterance. As soon as a colour key was pressed, the 25 relevant letter keys
were enabled, followed by the 10 digit keys. This approach allowed for rapid
and accurate data entry: most listeners were able to identify a block of 100
utterances in 5–7 minutes. Listeners were familiarised with the stimuli and the
task by identifying an independent practice set of 100 sentences prior to the
main set. The order of presentation of the non-practice conditions (including
the quiet condition) was randomised. Listeners identified the 13 blocks of 100
utterances over two sessions of around 40 minutes each on separate days.

2.4 Results

Listeners’ responses were scored in terms of colours, letters and digits correct
as well as all keywords correct. Figure 1 shows identification rates for these 4
measures as a function of SNR. As expected, the number of choices for each
keyword influences the results, with better identification rates at all SNRs for
colours, digits and letters respectively.
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Fig. 1. Percentage of colour, digit and letter keywords recognised correctly, averaged
across listeners as a function of SNR. The solid line shows the percentage of ut-
terances in which all the keywords were recognised correctly. Error bars here and
elsewhere denote +/- 1 standard error.

For the purpose of this study, overall keyword intelligibility was measured as
the percentage of keywords correct (i.e. the average of the colour, letter and
digit correct scores). Figure 2 plots overall intelligibility separately for male
and female speakers. A repeated-measures ANOVA with one within-subjects
factor (noise level) and one across-subjects factor (gender) demonstrated a
small but significant effect of gender (F(1,32)=5.00, p < 0.05, η2 = 0.14):
female speakers were more intelligible than males at most SNRs, a difference
equivalent to about 1 dB of noise.

For some of the subsequent analyses, the 12 conditions have been grouped
into 3 sets: a low noise condition (clean and 6, 4, 2 dB SNR), a medium
noise condition (0, -2, -4 and -6 dB SNR) and a high noise condition (-8,
-10, -12 and -14 dB SNR). Identification rates for each of the keyword op-
tions for the three noise level ranges are displayed in Figure 3. There is a
wide spread in the identification rate of keywords, particularly across the set
of letter tokens. For example, in the high noise condition, the identification
rate for letters ‘b’ and ‘v’ is little over chance level (4%), whereas the letter
‘r’ is recognised correctly nearly 50% of the time. A more detailed investiga-
tion of confusions patterns revealed that most occur between members of the
‘e’-set (‘b’,‘c’,‘d’,‘e’,‘g’,‘p’,’t’,’v’), with confusions between ‘b’ and ‘v’ being
particularly common. In addition, ‘m’ and ‘n’ are frequently confused.
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Fig. 2. Overall keyword intelligibility of male (solid) and female (dashed) speakers
as a function of global SNR.

Figure 4 shows overall keyword intelligibility of individual speakers in the three
grouped noise levels. The spread of intelligibility across speakers is large, with
values in the high noise case ranging from as high as 68% (speaker 18) to as
low as 24% (speaker 1). Mean intelligibilities are 98.0%, 88.7% and 45.3% for
the low, medium and high level noise bands respectively, with corresponding
standard deviations of 1.2%, 6.5% and 10.5%. The spread in the cleaner con-
ditions is reduced because many utterances are recognised without error, so
there is a ceiling effect that becomes more significant as the SNR increases.

3 Acoustic analysis

3.1 Acoustic measurements

To investigate possible factors underlying the intelligibility of Grid sentences
in quiet and in noise, a series of acoustic measures was estimated for indi-
vidual sentences and for each speaker. For each utterance, mean fundamental
frequency (F0) and overall duration were computed. F0 estimates and binary
voicing decisions were provided at 10 ms intervals using an autocorrelation-
based method (Boersma, 1993) implemented in the Praat program (Boersma
and Weenink, 2005). Durations were derived from utterance endpoints com-
puted via forced-alignment of the original Grid utterances. Since Grid sen-
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Fig. 3. Intelligibility of the individual colour (top), digit (centre) and letter (bottom)
tokens in either the low (black), medium (grey) or high (white) noise condition.
Tokens are arranged by order of intelligibility in the high noise condition.
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Fig. 4. Intelligibility of each of the 34 speakers in the Grid corpus in either the low
(black), medium (grey) or high (white) noise condition. Male speakers are shown
on the left while female speakers are on the right. Within each gender, speakers are
arranged by order of intelligibility in the high noise condition.

tences are of the same length, duration can also be interpreted as speech rate.

In addition to the F0 and duration measures, a vocal tract length (VTL)
warping factor was estimated. Using phone-level alignments, all instances of
the high vowels /i/, / � / and / � / in the Grid corpus were identified for each
speaker independently. These sounds were chosen because many examples ex-
ist (around 3,000 per speaker), allowing robust estimation of VTL warping
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Fig. 5. VTL warp factors for each speaker in the Grid corpus, estimated from the
vowels /i/, / � / and / � /. (o) males, (+) females.

factors. Frequencies for the first 3 vowel formants (F1, F2 and F3) were es-
timated at the mid-point of the time interval corresponding to each vowel
instance. The Burg algorithm (Burg, 1975) implemented in Praat was used
for formant analysis. For each speaker and each of the 3 vowels independently,
median values for F1, F2 and F3 across all instances were computed. To
provide a reference point for formant frequency warping, a median for each
formant and each of the 3 vowels across all speakers was calculated. A mul-
tiplicative factor, αv, which, when applied to each formant, minimises the
distance between the formant frequency estimates (F1s, F2s, F3s) of an in-
dividual speaker s and those of the ‘average’ speaker (F1a, F2a, F3a) was
computed for each vowel v independently using Equation 1,

αv = exp((log(F1s/F1a) + log(F2s/F2a) + log(F3s/F3a))/3) (1)

Similar VTL warp factor estimates were produced for each vowel using this
procedure. The median of the 3 estimates (α/i/, α/I/, α/E/) was taken as the
final VTL warp factor estimate. Warp factors for the 34 speakers are shown
in Figure 5. A clear separation between the male and female speakers can
be seen. Note that the ‘average’ speaker has a warp factor of unity. In the
subsequent discussion, the abbreviation VTLW is used to refer to warp factor
estimates, but it should be noted that larger values of VTLW correspond to
smaller VTLs.

A pairwise correlation analysis for the 3 measures introduced above, con-
ducted over all 34,000 sentences in the Grid corpus, showed a strong positive

10



0.9 0.95 1 1.05 1.1 1.15 1.2
50

100

150

200

250

300

VTL warp factor

m
ea

n 
F

0

Fig. 6. VTL warp factors plotted against mean utterance F0 for each speaker in the
Grid corpus. (o) males, (+) females.

relationship between mean utterance F0 and VTLW for the speaker produc-
ing that utterance (correlation coefficient ρ(V TLW, F0) = 0.82). However,
this correlation was almost entirely due to speaker gender, as shown in Fig-
ure 6. Perhaps surprisingly, when utterances from male and female speak-
ers were analysed separately, no significant correlation was found between
the two parameters ((ρmales(V TLW, F0) = −0.03, ρfemales(V TLW, F0) =
−0.05). Hence, for both the male and female groups, an increase in VTLW
does not result in an increase in mean F0 per utterance. Correlations be-
tween duration and the other two measures were also found to be non-
significant (ρmales(V TLW, duration) = 0.07, ρfemales(V TLW, duration) =
−0.05, ρmales(F0, duration) = 0.17, ρfemales(F0, duration) = −0.01).

3.2 Influence of VTLW, mean F0 and duration on intelligibility

The effect of VTLW, mean F0 and durational differences on intelligibility
was examined for the male and female speakers separately. For each of the
measures, the set of sentences heard was partitioned into three equal-sized
groups based on the measure value. To illustrate this process in the case of
the mean F0 measure, two breakpoints were chosen such that all sentences
with a mean F0 smaller than the first breakpoint formed a single subset, while
all those with a mean F0 falling between the two breakpoints constituted the
second subset, with the remainder forming the third subset. This process of
aggregation was used to allow robust estimation of intelligibility scores per
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Fig. 7. The influence of vocal tract length, mean F0 and duration on intelligibility
for male (solid lines) and female (dotted lines) speakers. In each panel, one pair of
lines for each of the 3 noise level groupings is shown.

listener. Note that this process produced different groupings of utterances for
each of the 3 measures. As before, noise conditions were grouped into 3 levels
(low, medium and high noise) for ease of interpretation.

Figure 7 shows listeners’ mean intelligibility scores as a function of differences
in VTLW, mean F0 and duration for the male and female speakers, at the
3 grouped noise levels. For each measure and gender, a two factor repeated-
measures ANOVA was carried out with measure subset and noise level as
within-subject factors. In all cases, the effect of noise level was highly sig-
nificant (p < 0.001), but of most interest was the effect of differences in the
measured parameter.

For male speakers, a significant interaction between noise level and VTLW was
found (F(4,16)=9.42, p < 0.001, η2=0.702). The effect of VTLW was signifi-
cant for medium (F(2,18)=4.15, p < 0.05, η2=0.315) and high (F(2,18)=12.11,
p < 0.001, η2=0.574) noise levels. However, the pattern at the high noise lev-
els was non-monotonic with no significant increase with increasing VTLW. At
medium noise levels, pairwise comparisons indicated that the increase between
the lowest and highest terciles was significant (p < 0.05). For the females, the
effect of VTLW differences was marginally significant at the lowest noise level
(F(2,18) = 4.7, p < 0.05, η2 = 0.342) but highly significant at the medium
(F(2,18) = 68, p < 0.001, η2 = 0.882) and high (F(2,18) = 62, p < 0.001, η2

= 0.872) noise levels. Pairwise comparisons of VTLWs in the individual noise
conditions indicated that while at the low noise level the lower two VTLW
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values were marginally different (p=0.026), at the medium and high noise lev-
els, all VTLW values differed (p < 0.001). Given the relatively small number
of speakers, it would be unwise to claim a clear effect of increasing VTLW
on intelligibility for the male speakers. However, for the female speakers, the
results do indeed suggest that vocal tract length plays an important role in
intelligibility, especially in high noise conditions.

A very similar picture emerged for the mean F0 measure, with a main effect
of mean F0 for the males just failing to make significance (p = 0.07), although
pairwise analyses in the three noise levels independently showed significant
effects of F0 (p < 0.05) in the low and medium noise conditions, with low F0s
advantaged. However, the female speakers showed a highly significant effect
of mean F0 (F(2,18) = 23, p < 0.001, η2 = 0.720) and interaction with noise
level (F(4,16) = 16, p < 0.001, η2 = 0.805). No effect of mean F0 was found
at the low noise level (p = 0.175) but a significant effect was found at both
medium and high noise levels due to the difference between the higher pair of
mean F0 values (p < 0.001). Consequently, it appears that sentences with the
highest mean F0 values (upper tercile of the female speakers, mean F0 > 200
Hz) are most intelligible and there is some marginal evidence that sentences
with the lowest mean F0 values (male speakers, mean F0 < 100) are also more
intelligible than those with higher F0s produced by males.

Clear effects of durational differences can be seen. For both male and female
speakers, there is a highly significant main effect of duration (males: F(2,18)
= 179, p < 0.001, η2 = 0.952; females: F(2,18) = 27, p < 0.001, η2 = 0.747),
which is also significant at all noise levels individually, though only marginally
so for the female speakers at the lowest noise level, presumably due to ceiling
effects. For the medium and low noise levels, the difference is entirely due to
the durational increase from the lower to the middle tercile. This suggests
that utterances with a high speech rate create greater difficulties for keyword
identification in noise, but that the moderate rates present no more difficulty
than the slowest rates.

Although utterance intelligibility appears to be related to F0 and duration,
this does not imply that these acoustic parameters are useful for predicting
relative speaker intelligibility. To test whether the effect of VTLW, F0 and
duration observed across utterances produces an effect of intelligibility across
speakers, each of the three acoustic parameters measured on a per-speaker ba-
sis (i.e. mean F0 per speaker, mean duration per speaker and speaker VTLW)
was tested for correlation with speaker intelligibility. Correlations were mea-
sured separately at each of the 12 SNR levels. Correlations were computed
across the full set of 34 speakers, and separately across either the 18 male
speakers, or 16 female speakers. Results of this analysis are shown in the top
row of Figure 11. Across all speakers, VTLW is loosely correlated with intelli-
gibility across the SNR range -14 dB to -4 dB. However, within this SNR range
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there is no significant intelligibility/VTLW correlation within male speakers,
and only very marginal correlation within female speakers. The effect observed
across all speakers is likely to arise from the fact that VTLW predicts gen-
der and female speakers are more intelligible than male speakers at low SNR
(possibly for reasons unrelated to vocal tract length). Within the set of male
speakers, duration is correlated with intelligibility in the range -8 dB to 2
dB, but not at 0 dB. Duration does not appear correlated with intelligibil-
ity amongst the female speakers. This lack of effect among female speakers
occurs in spite of the fact that the range of durations in the female set is
actually slightly greater than that in the male set (Figure 7). Fast talking fe-
male speakers do not have the reduced intelligibility observed with fast talking
male speakers. In summary, across the noise conditions studied, none of the
acoustic parameters is strongly correlated with intelligibility. This implies that
neither F0, VTL or duration can be used alone to make a useful prediction of
relative speaker intelligibility. The fact that the strong effects observed in per
utterance analysis are not reflected in the per speaker results, suggests that
within-speaker differences in mean F0 and duration are large compared with
between-speaker differences.

4 Glimpse analysis

4.1 Acoustic measurements

Speech is sparsely encoded with energy concentrated in compact regions of the
spectro-temporal plane. Even at highly unfavourable SNRs, there will be local
regions where the speech stands clear of the noise floor. The size, shape and
spectro-temporal position of these glimpses will be dependent on the char-
acteristics of the speaker. For example, a speaker with a peakier long term
spectrum is likely to produce more glimpses than a speaker with a flatter
spectrum. Availability of reliable speech glimpses is likely to be a contributing
factor to the intelligibility of the speech (Cooke, 2003, 2006). To test this hy-
pothesis, a model of glimpsing was applied to each speaker, and measurements
were made of the percentage of the spectro-temporal information glimpsed, a
quantity we call visibility.

Location of speech glimpses followed Cooke (2006). The model proceeds by
constructing an auditory spectrogram representation of the speech data. This
involves passing the input speech signal through a bank of 64 gammatone
filters with centre frequencies ranging from 50 Hz to 8 kHz linearly spaced on
an ERB-rate scale. Within each channel, the Hilbert envelope is computed and
subjected to a leaky integrator with an 8 ms time constant. Finally, the output
consists of 64 point ‘auditory spectra’ sampled at 100 Hz. This representation
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was computed for both the clean Grid utterances and the speech-shaped noise
used in the construction of noisy tokens. By comparing the spectra for the
unmixed speech and noise signals, a local SNR estimate can be computed.
Spectro-temporal points in the noisy utterance are marked as reliable if the
local SNR at that point is greater than a threshold of T dB on a log energy
scale. A glimpse is then defined to be a reliable region whose size is greater
than N spectro-temporal points, where the size of the region is measured in
terms of its 4-connectivity. We then define the visibility, V , of each utterance,
to be,

V = 100 ∗
Areaglimpsed

Areaspectrogram

% (2)

where Areaglimpsed is the count of the number of spectro-temporal points oc-
curring within all the glimpses, and Areaspectrogram is the ‘area’ of the auditory
spectrogram, computed as the number of frequency channels multiplied by the
number of frames. The glimpse location model has two free parameters, the
SNR threshold, T , and the minimum glimpse size, N . These values are tuned
empirically – as described in Section 5.2 – by minimising the distance between
the mean intelligibility curves shown in Figure 1 and the corresponding esti-
mates produced by the full ASR-based glimpsing model (presented in the next
section). This tuning procedure determined suitable values for T and N to be
3 dB and 5 respectively.

4.2 Influence of visibility on intelligibility

The effect of visibility on intelligibility was studied for the male and female
speakers separately. For both groups, sets of low, medium and high visibility
utterances were created using the same procedure as that used to partition
the data for the acoustic analyses: viz. all utterances from all speakers were
ordered by their mean visibility, and then the utterances were partitioned into
three equal-sized sets. The average intelligibility of each set was computed.
This analysis was repeated for each global SNR.

Figure 8 shows average intelligibility versus average visibility for the low visi-
bility and high visibility sets for female and male speakers at global SNRs of
-14, -12, -10, -8, -6 and -4 dB. More favourable global SNRs were not used
since performance is already near to ceiling. The first point to note is that high
intelligibility can be achieved despite a relatively small amount of the spec-
trum being visible. At -4 dB less than 10% of the spectrum is visible but the
intelligibility has reached 80 to 90%. Further, only 2% of the spectrum is re-
quired to recognise half the words correctly. This is evidence of the high degree
of redundancy in the speech signal for this limited perplexity task. Clearly,
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as the SNR is increased the visibility of the target increases and there is an
accompanying rise in intelligibility. More surprisingly, within a single SNR
there is a large difference between the mean visibility of the low visibility and
high visibility sets. So, while holding global SNR constant, differences in spec-
tral characteristics of the utterances have an effect on visibility equivalent to
around 2 dB of global SNR variation. The intelligibility of the high visibility
utterances is significantly (p < 0.001) greater than that of the low visibility
utterances for both male and female speakers at all SNR levels in the range
-14 to -4 dB. At each SNR, the visibility of the male and female utterances is
approximately equal. However, the female utterances have consistently higher
intelligibility for a given degree of visibility. Also, the gain in intelligibility
between the low and high visibility sets is greater for the female speakers than
for the male, i.e. the same amount of extra information is adding more to the
intelligiblity of the female speech.

Following the analysis of the previous section, the visibility data was also
analysed on a per-speaker basis. The correlations between speaker visibility
and speaker intelligibility in the noise range -14 dB to -4 dB are shown sep-
arately for the male and female speakers in Table 2. Significant correlations
are marked. A plot of the correlations over the full SNR range – and across
the combined male/female data – is shown in the 2nd row of Figure 11.

Considering female speakers first, it can be seen from Figure 11 that visibility
is highly correlated with intelligibility, especially in the range -12 to -8 dB. At
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Table 2
Correlation between speaker visibility and speaker intelligibility for male and female
speakers at each of the 6 lowest SNRs. Significant values (p<0.05) are marked with
* while highly significant values (p<0.005) are marked with **.

SNR -14 dB -12 dB -10 dB -8 dB -6 dB -4 dB

male 0.48 * 0.49 * 0.53 * 0.38 0.40 0.48 *

female 0.75 ** 0.91 ** 0.83 ** 0.81 ** 0.75 ** 0.66 **

the -14 dB point the correlation is reduced. At this extreme SNR there is a
performance floor effect where human performance reaches chance levels for
the least intelligible speakers. Correlation will therefore be reduced because
there is no significant difference in the intelligibilities of a subset of speak-
ers. The model performs less well at higher SNRs. At high SNRs where all
speakers have high visibility, differences in intelligibility are not likely to be
governed by the small inter-speaker differences in absolute visibility. As the
speech approaches the clean condition, intelligibility is probably more closely
related to the intrinsic intelligibility – or clarity – of the speaker. As reviewed
in the introduction, intrinsic intelligibility appears to be related to factors
such as the consistency of pronunciation, and the size of the vowel space, vari-
ables that are perhaps quite independent of visibility. Amongst male speakers,
correlations between visibility and intelligibility are much weaker. Significant
correlations occur only at -14, -12, -10, -4 and 2 dB and these correlations only
just reach p = 0.05. This result is surprising considering the strength of the
effect that visibility has on intelligibility, as seen in the per-utterance based
analysis (Figure 8). One explanation would be that although there is a similar
spread of visibilities across utterances of male and female speech, there is less
inter-speaker variability of visibility for male speech than for female speech.
However, the data does not support this explanation, because at the lowest
SNRs – where the female visibility/intelligibility correlation are high – there is
a larger spread of visibilities across male speakers than across female speakers.

5 Statistical modelling

In the previous section it was seen that at low SNRs there is a relation between
visibility and intelligibility for female speech but not for male speech. At high
SNRs, visibility is not a good predictor of intelligibility for either gender. Fur-
thermore, female speech is generally more intelligible than male speech of equal
visibility. Clearly, visibility alone is not sufficient to model speaker intelligibil-
ity. This is not surprising as studies using clean speech (i.e. 100% visible) have
shown that speakers have a range of intrinsic intelligibility (Bradlow et al.,
1996; Hazan and Markham, 2004). It is not sufficient simply to calculate how
much of the signal is glimpsed. The relative usefulness of glimpses must also
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be considered. One way to achieve this is to relate the glimpses to prior knowl-
edge of speech in the form of acoustic models. In this section, we implement
the full glimpsing model described in Cooke (2006) which attempts to predict
average listener response to noisy speech using statistical ASR techniques to
interpret the glimpses located by the energetic masking model in the auditory
front-end.

5.1 The ASR-based glimpsing model

Statistical models were constructed to represent each of the 34 speakers in the
corpus. The models were based on the 64-channel gammatone filterbank rep-
resentation described in the previous section. The 64-dimensional spectral vec-
tors were supplemented with their 1st order temporal derivatives – computed
using linear regression over a 5 frame window – to produce a 128-dimensional
feature vector.

For each speaker in the corpus a set of word-level hidden Markov models
(HMMs) was trained from the auditory spectrogram data. Each word model
was represented using two states per phoneme, i.e. the number of states varied
between two (the letter ‘E’) and ten (‘seven’). Each state had two transitions;
a self transition and a transition to the adjacent state. A three state silence
model was used to represent the silence period before and after the utterance,
and a single state model was used to model optional short pauses between
words. The short pause model had a transition between its non-emitting start
and end states allowing it to be skipped when it was not required. Each state
was modelled using a Gaussian mixture model with 5 diagonal covariance com-
ponents. The following ‘round-robin’ training procedure was used to maximise
the amount of training and test data. The 1,000 utterances were randomly di-
vided into five test sets containing 200 utterances each. For each test set a
corresponding set of models was built using the remaining 800 utterances as
training data. Training proceeded from a ‘flat start’ where all model states
were initialised with a single Gaussian whose mean and variance were com-
puted across the complete data set. Mixture splitting was employed to increase
the number of mixture components to two, then three, and finally five.

The statistical models were employed as described in Cooke (2006), using the
energetic masking model described in Section 4 to estimate which spectro-
temporal regions may be regarded as reliable. This information was repre-
sented as a binary spectral-temporal mask in which 1’s indicate spectro-
temporal regions in which the speech signal is glimpsed, and 0’s indicate
spectro-temporal elements that are effectively masked. Given this mask, the
noisy utterance can be recognised using the speaker dependent model of clean
speech using the bounded marginalisation missing data technique described
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in (Cooke et al., 2001).

5.2 Tuning model parameters

The glimpse model has two free parameters: T , the local SNR threshold for
glimpse detection, and N the minimum glimpse area. These parameters were
tuned using a subset of 4 speakers (two male, and two female) drawn randomly
from the 34 speakers in the grid corpus. A grid of parameter settings was tested
with values of T being -7, -5, -3, 0, 3, 5, 7 or 9 dB and with N being either 1, 5 or
25. For each parameter setting, the recognition results produced by the model
were compared with those of listeners on the same subset of speakers. The
distance between listener and model performance was measured by computing
the mean absolute difference between the points on the global SNR versus
recognition correctness curves for the colour, digit and letter tokens. The best
fit was found at T = 3 dB and N = 5. Different subsets of 2 male and 2 female
speaker were tested, and all produced the same best-fit N and T values. At
this granularity and for this task, the tuning of N and T appears to be speaker-
independent.

Figure 9 compares model and listener performance across all 34 speakers. At
the best-fit tuning, performance curves for the model have a similar shape
to those of listeners. However, the model underestimates listener letter recog-
nition performance at high SNRs. Closer inspection shows that the model
makes more confusions amongst acoustically confusable letter pairs – partic-
ularly, ‘m/n’ and ‘b/v’. However, here we are principally interested in relative

speaker intelligibility using the parameter values which best fit the overall
performance.

As the local SNR threshold, T , is decreased below the 3 dB point, the size
of the glimpses becomes larger but the glimpses become contaminated with
more noise. In this region, model fits become poorer as it starts to perform
better than humans at very low global SNRs. For example, letter recognition
at the -14 dB global SNR rises as the local SNR threshold is reduced and
peaks at about 40% correct at a local SNR threshold of -5 dB. At the same
global SNR human letter recognition is only 10%. That humans cannot achieve
better performance at low global SNR suggests that it may not be possible to
detect glimpses where the local SNR is much below 0 dB, i.e. the model can
simulate values of T below 0 dB using a priori information, but these values
may not be attainable in practice. An alternative explanation for the best-fit
local SNR threshold not being lower is motivated by the observation that at
higher global SNRs, where larger glimpses can be found at a given local SNR
threshold, the trend is reversed – reducing the local SNR threshold actually
reduces recognition performance. It appears that when the global SNR is high,
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Fig. 9. Comparison of listener and model recognition scores for colour (dotted), digit
(dashed) and letter (solid) tokens across all SNR for a range of model parameters.
Scores for listeners are those shown with +/- 1 standard error bars. Parameter
settings and distance score are shown in the title of each subplot. The model best
matches listener recognition data when T = 3 dB and N = 5.

it is better to have a high value of T so that the glimpses are kept noise-free,
while for high-noise conditions, it is preferable to operate at a low value of
T so that the glimpses are larger, but at the expenses of the glimpses being
less reliable. The T value of 3 dB is perhaps a reasonable compromise that
works well across the range of global SNRs at which speech recognition can
be usefully employed.

5.3 Results

The model was applied to produce recognition results for each speaker at each
SNR. Here, intelligibility and ASR-based scores were computed as the average
proportion of keywords correctly identified, expressed as a percentage and
then arcsine-transformed. As before, recognition scores for each speaker were
averaged across the low, medium and high noise level groupings. Correlations
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between the transformed ASR-based recognition scores and the transformed
human recognition scores across all 34 speakers for each noise level band can be
seen in Figure 12. ASR-based and HSR scores were normalised to have equal
mean and variance before plotting – a transformation which does not affect
the correlation but which makes the figure easier to interpret. The correlation
coefficients for the low, medium and high noise conditions are 0.60, 0.77 and
0.93 respectively. The model produces the best fit to the human data in the
highest noise conditions. In the medium noise condition the correlation is high,
but there are a subset of speakers for which the fit is poor – most notably the
male speakers 1, 5, 8 and 17.

As per the analysis of the acoustic measures and visibility, correlations were
computed at individual global SNRs both separately across either male or
female utterances, and jointly across all speakers in the corpus. Results are
shown in the second row of Figure 11. Correlation between visibility and in-
telligibility is plotted on the same axis for comparison. It can be seen that the
full ASR-based model consistently produces results that have much greater
correlation with listener performance than does the simple visibility measure.
While visibility alone is only a strong predictor of the pattern of intelligibility
for female speaker at low SNRs, the full glimpsing model can also predict the
relative intelligibility of male speakers at low SNRs, and of female speakers at
high SNRs. Reduced correlations at extreme SNR values are due to floor and
ceiling effects: In the clean condition the high quality of the speech recordings,
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and the small vocabulary nature of the recognition task, meant that listeners
made very few errors, so differences between speakers are not significant. At
the extreme -14 dB SNR point many of the speakers become totally unin-
telligible, so again there is no significant difference between a subset of the
intelligibility scores.

Although the model performs well across a range of SNRs, the correlations
are noticeably poorer in the region -2 to 0 dB. It is possible that this is due to
effects of informational masking which are not accommodated in the current
model. Although stationary noise is normally considered to have no informa-
tional masking potential and is a poor match to the spectrum of any particular
speech sound, there may exist small spectro-temporal glimpses of noise that
are well matched to some part of the speech models. These confusions will
occur most often at 0 dB SNR where the speech shaped noise masker has a
similar level as the target speech. The degree of confusion between the speech
and the noise may be speaker dependent. For example, the effect is likely to
be larger for speakers with a long term spectrum close to the average spec-
trum used for producing the speech shaped noise. The glimpsing model does
not account for these effects. Glimpses of speech are located using a priori

information, so regions of the background are never erroneously labelled as
belonging to the speech source.

Finally, it is interesting to note that since the ASR-based model is ‘micro-
scopic’, it can also be used to predict the relative intelligibility of individual
tokens averaged across speakers. Figure 13 compares the mean and variance
normalised arcsine-transformed ASR-based and HSR results for letters in each
of the three noise level bands. The bar on the left of each pair represents the
HSR result, and the bar on the right the ASR-based result. Correlation again
increases as the noise level is increased, taking values of 0.78, 0.83 and 0.85
for low, medium and high noise levels respectively. These correlations are all
highly significant. In the noisiest condition the general pattern of intelligibil-
ity is closely matched, with only a few letters not fitting. Most noticeably, the
intelligibility of ‘a’ is underestimated, and that of ‘o’ is overestimated.

Correlations are not as high for the digit and colour keywords, possibly be-
cause the notion of ’guessing’ is different in the model and listeners. When
listeners are forced to guess, some have a tendency to repeatedly select the
same response. For different reasons, when the model is faced with insufficient
evidence, it may consistently select the same token, based on such criteria
such as ease-of-masking. For instance, there is some evidence in the letter
responses that listeners pressed ’A’ more frequently than expected while the
model output ’O’ overly often. These artefacts will have little effect on corre-
lation scores when there are a large number of response categories, but make
a bigger difference when there are fewer tokens, as is the case for the digits
and colours.
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Fig. 11. Summary of correlations. Top row: Correlations between intelligibility and
acoustic factors – duration (squares), F0 (crosses) or VTL warp factor (triangles) –
measured across male speakers (left), female speakers (centre) or all speakers (right)
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ity (o) and between intelligibility and ASR-based scores (*) measured across male
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Correlations above the horizontal bars are significant at the p<0.05 level.

6 Discussion

6.1 Principal findings

This study compared behavioural performance on a multispeaker speech-in-
noise task with that of a model inspired by automatic speech recognition tech-
niques. Listeners identified 3 keywords in simple 6-word sentences in speech-
shaped noise spoken by one of 18 male or 16 female speakers.
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Fig. 12. An illustration of the correlation between the ASR-based and HSR scores
across all speakers in the Grid corpus for the low (top), medium (middle) and high
(bottom) noise level bands. Male speakers are on the left of the chart and female
speakers are on the right, with speakers ordered by increasing intelligibility (i.e. HSR
score). Each pair of bars represents a separate speaker, with the bar on the left indi-
cating the scaled HSR score and the bar to the right indicating the scaled ASR-based
score. ASR-based and HSR scores have been normalised to have equal mean and
variance before plotting so that the correlation is more readily apparent. The corre-
lation coefficients are 0.61, 0.75 and 0.93 for the low, medium and high noise level
bands respectively (p<0.001).

One outcome was that female speakers were more intelligible than males in
moderate and high noise levels, echoing the finding reported for clean speech
in Hazan and Markham (2004). Further, individual speakers varied greatly
in intelligibility. For example, in the high noise conditions, listeners identified
24% of keywords from the least intelligible speaker but scored 68% for the
most intelligible speaker.

An across-utterance analysis of a number of acoustic parameters (VTL, mean
F0 and duration/speaking rate) attempted to identify the basis for differences
in intelligibility. Interestingly, while mean F0 and VTL were highly correlated
when data from all speakers was pooled, no correlation was found within each
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Fig. 13. An illustration of the correlation between the ASR-based model and HSR
scores across all letter tokens in the Grid corpus for the low (top), medium (mid-
dle) and high (bottom) noise level bands. Each pair of bars represents a separate
letter token, with the bar on the left indicating the scaled HSR score and the bar
to the right indicating the scaled ASR-based score. Tokens are order by increasing
HSR score. ASR-based and HSR scores have been normalised to have equal mean
and variance before plotting so that the correlation is more readily apparent. The
correlation coefficients are 0.76, 0.82 and 0.87 for the low, medium and high noise
level bands respectively (p<0.001).

gender. Subsequently, male and female speakers were analysed separately. For
females only, both VTL warp factor and mean F0 were positively correlated
with intelligibility. For both groups, rapidly-spoken utterances were signifi-
cantly less intelligible than those produced at a moderate rate, but the latter
were no less intelligible than the slowest utterances.

However, although the 3 parameters showed some influence on the intelligi-
bility of individual utterances, none of them were consistently good predictors
of the intelligibility of individual speakers. This results suggests that within-
speaker differences in mean F0 and duration are too large to act as a discrim-
inative basis for speaker identification, and that differences in VTL across
speakers are insufficient for fine-grained intelligibility prediction.

A simple measure of energetic masking was used to examine whether the ‘visi-
bility’ of speech glimpses in noise could be used to predict speaker intelligibil-
ity. With utterances from all speakers pooled, visibility was highly-correlated
with intelligibility both across SNRs and within a single SNR. Further, visibil-
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ity was a good predictor of the intelligibility of individual females, especially
in high noise conditions. However, visibility alone was not able to account for
differences across the male speakers.

Recognition scores from a ‘glimpsing’ model which utilised visible spectro-
temporal information and employed ASR techniques to train speaker-
dependent statistical models were fitted to the behavioural data pooled across
all speakers. Using the single set of parameters which resulted in the best over-
all fit, the model was able to predict not only the intelligibility of individual
speakers to a remarkable degree (Figure 12), but could also account for most
of the token-wise intelligibilities of the letter keywords (Figure 13). The fit
was particularly good in high noise conditions.

6.2 Effect of noise level

In the low SNR condition, relative intelligibility estimates are a particularly
good fit to listeners’ data. This may be because many of the detailed phonetic
cues and fine temporal structure that are poorly represented by the HMM-
based acoustic models are equally inaccessible to humans when noise levels
are high. In such conditions, listeners may have to resort to the same robust
spectral envelope cues that the model employs. Model performance may also
be improved at low SNRs because there is less redundancy in the separated
glimpses of speech than there is in the complete spectro-temporal representa-
tion. The sparsity of the glimpses may better fit the independence assumptions
of the HMM-based acoustic models. Indeed, it has been observed informally
in previous missing data ASR studies that recognition can actually improve

when a small amount of masking noise is added to clean speech.

The relative poorer performance of the model in the cleaner conditions may be
a symptom of inadequacies of the acoustic modelling component. The frame-
based spectral or cepstral HMMs employed by traditional ASR are crude rep-
resentations of speech: they make invalid assumptions about the independence
of adjacent frames; they do not model temporal fine structure; they poorly rep-
resent fine phonetic detail (Hawkins, 2003); and they are notoriously poor at
modelling duration constraints. In recognition tasks which focus on acoustic
modelling – i.e. those which require trivial language models – the best ASR
systems fall well below the performance of humans (the performance gaps
quoted by Lippmann (1997) have narrowed surprisingly little in the last 10
years). In the current task, poor acoustic modelling contributes to frequent
confusions between acoustically similar token pairs such as ‘b’/‘v’ and ‘m’/‘n’
– confusions that listeners do not suffer from until a considerable amount of
noise has been added to the speech. The model makes twice as many recogni-
tion errors as humans in low noise conditions. However, although this affects
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absolute intelligibility, it does not necessarily have an impact on the prediction
of relative speaker intelligibility. The model might consistently overestimate
speaker errors by a fixed amount while getting the ordering of intelligibili-
ties exactly correct. However, it is likely that acoustic modelling problems
are speaker-specific and therefore introduce relatively more errors into some
speakers than others. For example, there are problems that are specific to fe-
male speech: higher mean F0 values lead to unwanted resolution of harmonic
structure which introduces a variability in the spectral profile.

6.3 Glimpse detection

The model simulates the detection of speech glimpses by using a priori knowl-
edge of the unmixed signals and tunable local SNR (T ) and minimum glimpse
size (N) thresholds. Tuning these parameters revealed that the model fits the
listener data when T is around 3 dB, and that there is a trade off between
threshold and glimpse size. A similar fitting procedure was employed in Cooke
(2006), who found close fits to listener performance at two different local SNR
thresholds, one at around 8 dB (with a value sensitive to the glimpse size pa-
rameter, N) and a lower threshold in the range -5 to -2 dB. This earlier study
differed from the current one in a number of ways. Most significantly, the cur-
rent study used stationary noise at a range of SNRs, whereas Cooke (2006)
employed noise with a varying degree of stationarity at a fixed global SNR of
-6 dB. If the tuning of T is repeated in the current study using just the -6 dB
global SNR data, good matches to listener data are found at -3 db and +3
dB, and the model-listener distance versus threshold curves look remarkably
like those reported in Cooke’s earlier study. Of course, it is unlikely that any
‘glimpse detector’ in the auditory system works at a fixed negative or positive
local SNR threshold. Such mechanisms, if they exist, are likely to be far more
complicated than the simple thresholding simulated here. For example, it is
likely that periodic speech information can be detected at a lower local SNR
than aperiodic speech information. Thresholds may be tunable – at higher
global SNR the threshold may be lowered to allow through more (but noisier)
data. Glimpse detection may even be under the guidance of top-down mech-
anisms, i.e. with more central recognition processes adapting the parameters
of more peripheral processes such as to reduce recognition error. Considering
the possible complexities, it is perhaps surprising that the simple model im-
plemented here predicts relative speaker and token intelligibilities with such
fidelity.

27



6.4 Informational masking

The current model provides no account of informational masking (IM). IM is
a central process and is often discussed in terms of attention, i.e. the difficulty
that the listener has in focusing on the masker and excluding the target. IM
effects may also result from masker elements being incorrectly grouped with el-
ements of the target. From a source-modelling perspective such as that offered
by ASR, one might assume that IM results when glimpses of the masker fit
well to the target model. In the current study, stationary speech-shaped noise
was chosen as the masker in order to minimise IM effects – stationary noise
provides a very effective energetic masker, but is not readily confusable with
speech. However, it is possible that small glimpses of the noise background
could be incorrectly assigned to the foreground. This would be mostly likely
to occur when the speech and noise have the same average level (i.e. the 0
dB global SNR mixtures). As noted earlier, this IM-like effect is one possible
explanation for the dip in correlation between estimated and actual intelligi-
bilities seen at around 0 dB (see Figure 11).

6.5 Conclusions

Listeners identified keywords in short sentences spoken by a range of speakers
presented in stationary noise at a number of SNRs. A model based on the
recognition of glimpses of the target speech resulting from an energetic mask-
ing procedure provided good predictions of relative speaker intelligibility. The
same model also predicted listeners’ performance on individual keywords. A
better fit was provided in conditions of moderate to high noise than in quiet
and low noise, suggesting that while more detailed acoustic representations
and models are required to capture the intrinsic intelligibility of individual
speakers, relatively crude but robust representations may suffice when noise
is present.
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