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Abstract 

A method for estimating sound source distance in dynamic 

auditory „scenes‟ using binaural data is presented. The tech-

nique requires little prior knowledge of the acoustic environ-

ment. It consists of feature extraction for two dynamic distance 

cues, motion parallax and acoustic τ, coupled with an inference 

framework for distance estimation. Sequential and non-

sequential models are evaluated using simulated anechoic and 

reverberant spaces. Sequential approaches based on particle 

filtering more than half the distance estimation error in all con-

ditions relative to the non-sequential models. These results 

confirm the value of active behaviour and probabilistic reason-

ing in auditorily-inspired models of distance perception. 

Index Terms: particle filter, auditory distance perception 

1. Introduction 

Many previous studies have described human distance percep-

tion performance (e.g. see review in [1]) although very few 

computational models exist. Listeners‟ estimation of the dis-

tance to a sound source is generally much less accurate than the 

ability to determine the angular direction of a sound source. 

Listeners can resolve changes in direction of approximately 1˚ 

for frontal sources [2], but significantly underestimate the dis-

tance to faraway sources and typically overestimate the dis-

tances to sources closer than 1m. 

Potential cues to distance can be classified into relative 

cues and absolute cues. Relative cues include loudness and 

source spectrum, but prior information about the sound source 

is required to estimate absolute distance. For anechoic condi-

tions, the loudness cue can be used to determine changes in the 

distance of a constant amplitude sound source according to the 

inverse square law. Differential absorption of frequencies along 

the propagation path is the major source of spectral cues. 

Familiarity, binaural information and reverberation deliver 

absolute cues. If the listener is sufficiently familiar with the 

sound source, relative cues can be used to judge absolute dis-

tance. Listener familiarity with both the source signals and the 

acoustic environment is clearly a key factor in any model of 

auditory distance perception. For near-field listening (distance 

< 1m), binaural cues based on interaural time and intensity 

differences provide not only directional but also distance in-

formation. Several models [3-5] take advantage of systematic 

changes in interaural differences. However the utility of these 

cues for auditory distance perception is doubtful for far-field 

(distance > 1m) sources because interaural differences are very 

nearly independent of source distance at such distances. 

Another important distance cue is the contribution of re-

verberant energy relative to direct energy. When sound is pro-

duced in a reverberant space, the associated reverberation may 

often be perceived as a background ambience, separate from 

the direct energy. The ratio of direct to reverberant energy is 

greater with nearby objects than it is with distant objects. Thus, 

distant objects sound more reverberant than close objects. 

Bronkhost and Houtgast [6] formulated a computational model 

of auditory distance perception based primarily on the direct-

to-reverberant energy ratio. This model requires the listener to 

have prior knowledge of the reverberation characteristics of the 

environment. 

All the cues described so far assume that the listener is sta-

tionary. In the real world, sound sources and listeners are sel-

dom stationary, and their motion has the potential to provide 

additional cues to auditory distance perception (fig. 1). It has 

been suggested that motion-induced rate of change of intensity 

can provide listeners with reliable distance information [7]. 

This cue, known as acoustic τ (time-to-contact), may also be 

expressed as a ratio of distance to velocity when velocity is 

constant. In addition, listener motion creates a changing azi-

muth, or motion parallax, with respect to a stationary source. 

This can be used to estimate source distance via the translation 

distance. The calculation of acoustic τ (fig. 1, right) needs prior 

distance information from another cue such as motion parallax 

and hence must be exploited in a framework of multiple, cou-

pled cues. Speigle and Loomis [7] found that dynamic cues of 

motion parallax and acoustic τ influence an observer‟s judg-

ment of source distance above and beyond static cues. However, 

their experiments involved relatively simple auditory scenes 

and it is an open question as to whether dynamic cues are more 

or less useful in realistic environments. 

Motion parallax: Δt= f(Αt,Αt-1,S) Acoustic τ: Δt= f(It,It-1,Δt-1)
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Figure 1: Two potential dynamic auditory cues to distance: motion 

parallax (left) and acoustic τ (right). 

Bronkhorst and Houtgast‟s model requires acoustic source 

time-of-onset to separate the contributions of direct and rever-

berant energy and relies on the existence of a detailed environ-

mental description. By contrast, the current study tests the idea 

that a listener‟s active behaviour provides useful cues for dis-

tance perception. Consequently, we employ the two dynamic 

distance cues mentioned above. We further focus on sources 

beyond 1m since static binaural information can provide salient 

cues for near-field sources. The central question of the current 

study is to determine whether it is possible to track, using only 

dynamic cues, the varying distance from a moving listener to a 

fixed source. To tackle this tracking problem, we introduce a 

model based on particle filtering [8] to incorporate a moving 

listener which exploits the potential of dynamic distance cues, 

and measure the effectiveness of particle filtering by comparing 

the models based on „instantaneous‟ distance estimates derived 

from dynamic cues. 
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2. Computational model 

Fig. 2 depicts the proposed model. Dynamic cues are generated 

from successive measurements of cross-correlation and inten-

sity. Distance inference is based on triangulation for motion 

parallax and an adaptation of the inverse square law for inten-

sity-based cues. 

@ t-1

Captured

Binaural

Signal

Motion Parallax

(Triangulation)
Gammatone 

filterbank

@ t-1

Distance 
Estimate

Acoustic τ
(Adapted Inverse 

Square Law)

Gammatone 

filterbank

Basilar Membrane Response

Xcorr

@ t

Intensity

@ t

Sequential 

Models
L

R

L+R

Instantaneous Models

 

Figure 2: Proposed computational model for distance estimation. 

2.1. Azimuth-based cues 

Given the estimated azimuth Αt-1 before moving and the posi-

tion displacement S due to the motion, one distance hypothesis 

Δi can triangulate one azimuth value At and vice versa (see Fig. 

1, left). This motion parallax cue needs a robust azimuth esti-

mate to infer the required distance value. Interaural time differ-

ence (ITD) has been considered the most reliable acoustic cue 

in azimuth localisation. The calculation of ITD is based on the 

cross-correlation of the outputs of auditory filters modelled 

using a pair of gammatone filterbanks [9]. While the use of 

ITD information is known to lead to front-back confusions [2], 

dynamic cues resulting from head movements or listener mo-

tion may be important in their resolution. 

2.2. Intensity-based cues  

Intensity-based cues to distance stem from an adaptation of the 

inverse square law relating intensity to distance: 

  2I P a b    (1) 

where P is sound source power and Δ is the source-listener 

distance. In anechoic space, eqn. 1 becomes the inverse square 

law with a and b equal to 1/4π and zero respectively. In rever-

berant space, the term b represents the contribution of diffused 

reverberant energy which is independent of distance and is 

assumed to be fixed for static environments. Reverberant en-

ergy also decreases in distance [10]. As a consequence, a takes 

on a larger value than for an anechoic space. 

 Since acoustic τ is based on successive estimates, there is 

no need to know P to estimate the current perceived sound 

intensity It. Given estimates of distance and intensity, Δt-1 and 

It-1, at the previous time step, and the current distance hypothe-

sis Δt, It  can be computed from (1) as follows: 

 2 2 2 2 2 2

1 1 1 1( )t t t t t t t tI I a b a b             (2) 

2.3. Sequential models 

The sequential models we employ – particle filters (PFs) –

use probabilistic inference to monitor a target. It has been 

shown that PFs are an effective way of tracking sound sources 

in reverberant environments [11]. Here, we estimate source 

distance using observations accumulated over time by a mov-

ing listener. The target states are modelled using a collection of 

N particles (hi, ωi), at each time point t: 

 ( , , )i i i i

t t t th     , i = 1,…, N (3) 

where Δi, Αi and Ii are random variables representing hypothe-

ses for distance, azimuth and intensity for the  ith particle. A 

probability distribution function characterizes these state vari-

ables and particles are drawn from it to provide a sample-based 

representation. A weight ω is associated with each particle 

during this sampling process. 
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Figure 3: Standard particle filtering process. 

Particle filtering is the iterative application of the operations 

depicted in Fig. 3. Each operation alters the state variables and 

associated particle weights based on models of the sound 

source dynamics and the likelihood of the current observations. 

Estimates are provided by the weighted mean across all parti-

cles. Each iteration of the PF algorithm has three stages: pre-

diction, update and resampling. Each particle is first modified 

based on the prediction made by the model of target dynamics. 

Next, particle weights are updated according to a likelihood 

function derived from current observations. Finally, particles 

with low weights are eliminated and replaced using a resam-

pling mechanism which maintains a proper sample-based rep-

resentation of the true pdf. 

The above description is referred to as a sampling impor-

tance resampling (SIR) particle filter [8]. In our implementa-

tion, noise is added to state variables at the prediction stage to 

differentiate the duplicated particles at the re-sampling step. To 

avoid the potential loss of diversity among particles caused by 

performing the resampling at every time step, we calculate an 

effective sample size Neff [8] which helps monitor the insignifi-

cance of particles and resampling schedule. 

Particle redistribution during resampling using both the 

current observation and that available at the next time-step 

leads to a variant of SIR particle filtering known as auxiliary 

sampling importance resampling (ASIR) [12] which allows the 

state space to be explored by considering the on-going dynam-

ics. Consequently, the generated particle distribution will be 

more likely to be closer to the true pdf. 
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Figure 4: Conversion from dynamic listening to a tracking scenario. 

The PF framework for tracking sound sources requires a model 

of sound source dynamics. PF is normally used in target track-

ing applications. Here, the target is assumed to be static and the 

listener accounts for the dynamics (fig. 4, left). However, we 

can also adopt an egocentric view in which the motion is that 

of the source relative to a static listener (fig. 4, right). The 

source is viewed as dynamic with motion determined by lis-

tener movement. The distance hypotheses of all particles are 



transformed according to this movement. A noise term is ap-

plied to some particles (with probability 0.5) to effect an addi-

tional shift in both azimuth and distance. Particle weights ωi 

are linearly rescaled to occupy the full range 0~1 (i.e. the 

minimum particle weight is 0 and the maximum 1 after re-

scaling). The noise term is weighted by (1-ωi), so that weaker 

particles make larger movements. The derived distance hy-

pothesis Δt is used to update the state parameters Αt and It as 

described in section 2. These two updated parameters are later 

evaluated with the likelihood models described below to gener-

ate an associated likelihood weight. 

2.3.1. Likelihood model 

The weight ωi of each particle i is updated according to func-

tions derived from the current binaural acoustic observation Z, 

represented by Zcc, the summary cross-correlation (i.e. the indi-

vidual channel cross-correlations averaged across frequency), 

and Zintens, the summed intensity from the binaural signals. 

We used the pseudo-likelihood approach from [11] to treat 

the cross-correlation function as the likelihood function di-

rectly in evaluating the hypothesized azimuth of each particle: 

    | , , / 2 / 2cc t CC tp Z h f B        (4) 

where fcc is the summary cross-correlation function, Bt is the 

binaural input from the gammatone filters at the current time 

step, and θ is the azimuth angle represented by a given cross-

correlation lag. Sample lags of the cross-correlation function 

are transformed into azimuth angle θ by applying Woodworth‟s 

spherical model [13]. 

A one-dimensional Gaussian distribution whose mean is 

the intensity estimate It in eqn. 2 is used as the likelihood func-

tion for intensity. In addition, if the P in eqn. 1 is calculated by 

replacing Δ with the previous distance estimate 
1

ˆ
t  (weighted 

over all particles) and I with the previous intensity measure, 

Zintens,t-1, we arrive at a new intensity-based estimate It ́ which 

can be viewed as cue based on acoustic power: 

 2 2 2 2 2 2

, 1 1 1 1
ˆ ˆ ˆ( )t intens t t t t t t tI Z a b a b   

           (5) 

The product of Gaussian distributions (Np and Nτ for the acous-

tic power and acoustic τ cues respectively) whose means are 

the intensity estimates It ́ and It is used as the likelihood func-

tion for intensity: 

      2 2| , ,intens t s p pp Z h N N        (6) 

An accurate distance estimate can improve the reliability of this 

cue and help stabilize the PF performance after reaching a cer-

tain confidence level. However, it is worth noting that inaccu-

rate distance estimates and intensity measures may degrade It ́. 

A larger σ will lead to a smoother likelihood function and gen-

erate weights with smaller contrast. During pilot trials, we 

noted that the acoustic power cue is better underemphasized 

relative to the acoustic τ. The values σp = 4 and στ = 0.4 were 

chosen here. The final likelihood function was the product of 

individual functions for azimuth and intensity: 

      | | |t cc t intens tp Z h p Z h p Z h   (7) 

Both (6) and (7) make the assumption that the estimates are 

independent. This is unlikely to be the case in practice since the 

calculation of distance and acoustic τ are coupled. 

2.3.2. Robust distance estimation 

Given a particle distribution, several different methods can be 

used to obtain a distance estimate. Apart from the global 

weighted mean, it is possible to choose the best particle or the 

weighted mean in a small window around the best particle (also 

called the robust mean). The weighted mean derived from 

multi-modal distributions can lead to a biased estimate if there 

is no proper weighting between individual measurements, 

while the best particle introduces a discretization error. The 

robust mean is considered the best method and is used in the 

evaluations presented here, but it is also the most computation-

ally expensive because of the determination of the window. 

2.4. “Instantaneous” (non-sequential) models 

In the instantaneous model, we assume no prior knowledge 

from the previous states and there is no probabilistic particle 

filter model to support the current state estimate. Given the 

current position, motion parallax derives a distance estimate 

from azimuth measurements of two successive time steps (see 

fig. 1, left). This model is referred to as MP in table 2. As men-

tioned earlier, acoustic τ requires a distance estimate from an-

other source, so if the instantaneous azimuth-based distance 

estimate is employed, we arrive at a second instantaneous 

model whose distance estimate is simply the mean of the mo-

tional parallax and acoustic τ at current time. This is the 

MP+AT model in table 2. 

 

Figure 5: An example of a simulated listener trajectory.  

3. Evaluation 

Evaluations employed a simulated acoustic environment. In 

order to add reverberation and spatial location to the original 

monaural stimuli, impulse responses were created using the 

Roomsim simulator [14] with a room of size 18m x 18m x 

2.75m. The simulated sound source was fixed at the centre of 

the room, 1.2m above the ground. All surfaces of the room 

were assumed to have identical reverberation characteristics. 

Two reverberation surfaces, “acoustic plaster” and “platform 

floor wooden”, were used, with mean estimated T60 reverbera-

tion times of 0.34s and 0.51s respectively. The simulated lis-

tener can start from any place of the room. At each time step, 

the simulated listener moved either directly or diagonally for-

ward (i.e. ±45◦), avoiding the room boundary and the sound 

source. For collision avoidance, head orientation was changed 

until a forward ±45◦ or 0◦ movement was possible. For each 

new position and orientation of the listener, a new pair of room 

responses was generated with Roomsim. These were convolved 

with the point sound source, which was a pink noise, to pro-

duce the binaural signal. 

A distance estimate was generated for each forward move-

ment. The root mean square error (RMSE) of distance for the 

latter part of the trajectory was taken as an indication of algo-

rithm performance. Blind initialization of the particle hypothe-

ses can lead to poor performance during first few iterations. To 

avoid adding noise to the RMSE due to this initial “transient”, 

a measure called frame convergence was monitored. Frame 

convergence occurs when the distance estimate error is smaller 



than the standard deviation of the entire particle set estimates 

[11], and can be used as a performance indicator for different 

PF algorithms. Since frame convergence requires prior knowl-

edge of the true distance, it cannot be used in live estimation, 

but convergence times for different PF approaches can be com-

puted offline and the mean time to convergence used in live 

evaluations. Using a development set of stimuli, we measured 

an average time to convergence of 15.7 movements for SIR and 

9.2 for ASIR. Consequently, the RMSEs reported here were 

based on that part of the trajectory from the 15th and 9th time 

steps to the end of the trajectory for SIR and ASIR respectively. 

In addition to determination of the value of the different 

cues in distance estimation, a goal of the evaluation was to 

compare non-sequential and sequential methods. To ensure a 

fair comparison, the parameters of each PF algorithm were 

independently tuned using a reference audio sample to achieve 

the best performance. This process was done empirically by 

running each algorithm a number of times with varying pa-

rameters until a satisfactory performance was achieved. Table 1 

presents the parameter settings chosen for each PF algorithm. 

Table 1. Parameter setting for PF algorithms. 

 
 

The fitted parameters from data produced in simulations using 

Roomsim for intensity-based cues in different acoustic envi-

ronments are also listed in Table 1. Note that increasing a in 

eqn. 1 leads to better PF performance as more reverberation is 

present. Strong ceiling and floor echo might account for this 

value because their contributions in reverberation are also de-

graded as the source-listener distance increases. 

4. Results 

Table 2 presents the estimation results in three simulated envi-

ronments. Results were obtained by averaging over 100 various 

trajectories, each of which had 50 time steps. In each condition, 

the benefit of employing intensity-based cues and the sequen-

tial PF framework can be observed, although in the most severe 

reverberant condition the use of acoustic τ and power led to a 

drop in performance compared to the use of motion parallax 

only. This may stem from the independence assumption used to 

combine cues whose estimation is in fact coupled. 

Table 2. Performance comparison of distance estimate error (in meter) 

for 3 types of simulated environments. Results are given for two in-

stantaneous models (MP and MP+AT) and ASIR PF models (MP+PF 

and MP+AT’+PF). Numbers in brackets are the SIR PF results. MP: 

motion parallax; AT: acoustic τ; AT’: acoustic τ + acoustic power 

cue (see sec. 2.3.1); PF: particle filtering. 

 
 

Particle filtering outperforms the instantaneous methods, and 

the ASIR algorithm typically works better than the generic SIR 

approach. Reverberation leads to some degradation in distance 

estimation accuracy. The ASIR PF approach results in RMSEs 

below 3.4m in the worst conditions. Although no equivalent 

data for listeners is available, an approximation can be obtained 

using the power function proposed by Zahorik et al. [1], lead-

ing to an estimate of around 3.5m error (resulting from distance 

underestimation) at the average true distance value of 7.3m 

used here. However, this approximation is based on the average 

of many studies which tested both static and dynamic cues, so 

the comparison should not be regarded as definitive. 

5. Conclusions 

A computational model was developed to estimate source-

listener distance using dynamic acoustic cues for non near-field 

sources based on a model of binaural hearing. The method 

assumed no detailed knowledge of the acoustic environment. 

Compared to baseline non-sequential models, two sequential 

particle filtering algorithms operating in a simulated acoustic 

environment decreased the estimation error to levels commen-

surate with some estimates of human performance. Future work 

will compare the performance of listeners and automatic dis-

tance estimation in real acoustic environments. 
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