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Abstract
Listeners make mistakes when communicating under adverse
conditions, with overall error rates reasonably well-predicted
by existing speech intelligibility metrics. However, a detailed
examination of confusions made by a majority of listeners is
more likely to provide insights into processes of normal word
recognition. The current study measured the rate at which ro-
bust misperceptions occurred for highly-confusable wordsem-
bedded in noise. In a second experiment, confusions discovered
in the first listening test were subjected to a range of manipula-
tions designed to help identify their cause. These experiments
reveal that while majority confusions are quite rare, they oc-
cur sufficiently often to make large-scale discovery worthwhile.
Surprisingly few misperceptions were due solely to energetic
masking by the noise, suggesting that speech and noise “react”
in complex ways which are not well-described by traditional
masking concepts.
Index Terms: speech perception, word confusions, noise

1. Introduction
Any account of speech perception must be able to explain the
robustness of spoken communication in the face of reverber-
ation, environmental noise, competing talkers and channeldis-
tortions [1, 2]. Over the years, increasingly accurate predictions
of overall speech intelligibility for a wide class of distortions
have been made [3, 4, 5]. However, thesemacroscopicmodels
solely provide a numeric indication of how accurately speech in
general will be perceived in a given condition, and are not de-
signed to produce detailed insights into the processes of speech
perception. Providing a good match to average listener recog-
nition rates is one thing, but matching listener responses at the
level of individual tokens is much more challenging.

In contrast,microscopicmodels [6, 7, 8] have been pro-
posed to make specific predictions about how individual tokens
of noisy speech will be perceived. These models are in their
infancy and, to date, have had limited success, operating inre-
stricted domains such as intervocalic consonant identification
[9]. At present, much use is made of traditional information
transmission measures [10], but these, like confusion matrices,
are summary statistics which are less than precise in pinpoint-
ing model deficiencies. An important exception is [8], whose
method for detailed analysis of individual tokens in noise is
closest in spirit to what is proposed here.

The essential idea of the approach described in this paper
is straightforward: to find examples of listener responses to
speech in noise which demonstrateconsistent confusionsi.e.
tokens for which a majority of listeners make the same error.
Figure 1 illustrates consistent confusions for words embedded
in babble noise. A large corpus of such confusions would be im-
mensely valuable as a mechanism for both diagnosing and eval-

Figure 1:Speech and babble noise “reactions” which result in
confusions.

uating microscopic speech perception models at a fine-grained
level of detail. In addition, a confusions corpus has the potential
to address the issue of what aspects of speech make it robust or
vulnerable to noise.

However, it is far from clear how best to find examples of
consistent confusions. The current study takes the form of apre-
liminary investigation to test the feasibility of large-scale con-
fusion discovery. Two listening experiments were performed to
(i) estimate thediscovery ratefor consistent confusions i.e. the
proportion of noisy speech tokens which lead to a given rate
of listener agreement on the incorrect answer; and (ii) to deter-
mine whether the cause of some confusions can be identified
semi-automatically, allowing filtering of confusions intocate-
gories. Section 2 describes the word identification in noisetask
employed to provoke confusions in a group of listeners, while
section 3 shows how speech and noise signals which result in
interesting confusions can be manipulated to expose possible
reasons for the confusion. Section 4 examines the feasibility of
collecting a large-scale confusions corpus.



2. Discovering consistent confusions
Experiment 1 measured listener response agreements in order to
estimate thediscovery ratefor consistent confusions in a variety
of noise backgrounds and signal-to-noise ratios (SNRs).

2.1. Word material

A word identification task was chosen in preference to the use
of logatomes or syllables, anticipating the eventual need to use
a large population of phonetically-naive listeners for corpus col-
lection. To maximise the likelihood of confusions, words were
monosyllabic, relatively common, and had dense neighbour-
hoods of similar-sounding words. The following criteria were
applied:

• neighbourhood density (defined as the set of words that
differ by the insertion, deletion or substitution of a single
phoneme)≥ 20

• maximum ofwritten/spoken frequency ≥ 10 per mil-
lion

Word lists were obtained by filtering an existing mono-
syllabic lexical database which contained both neighbourhood
density and frequency statistics [11, 12]. After the removal of
homophones, 613 items met the criteria above. Table 1 shows
a selection of words with the largest and smallest number of
potential confusions. For example, insertion, deletion orsubsti-
tution of a single phoneme inbore leads to 77 other words.

Table 1: Example monosyllabic words, phonological neigh-
bourhood density (ND) and frequency/million.

IPA ND freq (spoken) freq (written)

bore /bO:/ 77 19 41
pour /pO:/ 73 27 83
awe /O:/ 73 0 12

... ... ... ... ...
source /sO:s/ 20 111 129

learn /l3:n/ 20 366 303
teach /ti:tS/ 20 276 132

Words were recorded at 50 kHz in an IAC single-walled
sound booth by 2 male native British English speakers in ci-
tation form, then endpointed, filtered to remove energy at fre-
quencies below 50 Hz, and downsampled to 16 kHz.

2.2. Experiment 1

Words were centrally-embedded in noise fragments drawn from
the list in table 2 with 200 ms lead and lag time. Stimuli were
presented in blocks of 100, with SNR varying incrementally
from moderate to intense through the block, based on the ex-
tremes shown in table 2, values chosen on the basis of extensive
pilot testing to avoid a low probability of confusions for the least
adverse SNRs and a high probability of near-random responses
at the more adverse end. While no claims can be made about the
optimality of these figures, it is noteworthy that consistent con-
fusions were likely to occur for rather a narrow range of SNRs
for certain noise types. Tokens from the two speakers were used
for each of the 12 noise backgrounds, for a total of 2400 stimuli.

Ten native British English listeners with no hearing prob-
lems identified words in noise under computer-control. Stimuli
were delivered over Sennheiser HD 250 Linear II headphones
in an IAC booth. Motivated by the goal of provoking consistent

Table 2:Noise types and SNR ranges for expt. 1.

noise SNRmax SNRmin

competing talker -5 -13
2-talker babble -3 -9
3-talker babble -2 -7
4-talker babble -2 -7
6-talker babble -1 -6
8-talker babble 0 -7

16-talker babble 0 -6
speech-shaped noise 0 -4

1-talker modulated SSN -2 -5
4-talker modulated SSN 0 -4

reversed talker -5 -11
factory noise 2 -3

confusions, and unlike traditional speech perception studies, no
randomisation of blocks or stimuli within blocks was performed
i.e. all listeners heard the stimuli in the same order. This meant
that context effects, such as priming from previously-presented
words, were the same for all listeners. A single noise type and
speaker were used within any given block. While randomisation
of noise type, SNR and speaker might be expected to produce
more confusions, the current task was more like the situation
faced by listeners in the real world. Subjectively, increasing the
noise level throughout the block had the effect of engaging the
listener. Listeners proceeded through the 24 blocks at their own
pace in two sessions of 40 minutes on separate days. Listeners
responded by typing the word they heard. On average, listeners
required 2.2 seconds per stimulus.

2.3. Results

To assess listeners agreements, responses were first mappedto a
single homophone in the cases where multiple equivalent ortho-
graphic forms existed (e.g. [by, bye, buy]7→ by). No extensive
manual checking for typos or spelling errors was performed,but
a limited inspection suggested a very low incidence.

Table 3 summarises listener agreements for these stimuli.
Listeners were unanimous in choosing the correct answer for
29.8% of the 2400 tokens, while a majority agreed on the cor-
rect word nearly 70% of the time. For consistent confusions,
unanimity occurred for far fewer tokens (0.38%), but a majority
agreed on the wrong answer nearly 7% of the time (161/2400).
All noise types led to confusions, with the competing talker
background resulting in one majority confusion for every 9 to-
kens.

Table 3:Percentage of tokens with a given rate of listener agree-
ment, for correct and confused responses. The lower row repre-
sented the discovery rate for consistent confusions.

agreement 100% ≥ 90% ≥ 80% ≥ 70% ≥ 60%

correct 29.8% 44.2% 54.3% 62.9% 69.5%
confused 0.38% 0.96% 2.33% 4.25% 6.71%

Table 4 lists example confusions with agreement of 80%
or more. Deletions and insertions as well as substitutions (or
equivalently deletion followed by insertion) abound, particu-
larly for consonants. /p/ is particularly detachable while word-
initial /l/ seems to attract a preceding consonant.



Table 4:Example majority confusions (format: sent-heard).

80% 90% 100%

dull-doll, lip-flip pad-had big-fig
lock-block, pat-fat howl-owl ought-port
lash-flash, hall-fall toll-told dole-doll

boil-oil, cheap-cheek peak-beak force-horse
beer-fear, limb-live ill-kill boil-oil
wall-walk, eye-high harm-hard veil-fail

bow-bone, chew-tune pop-top wide-white
pat-path, more-normal lure-law pill-hill

3. Identifying the cause of confusions
Some listener confusions might have a trivial explanation such
as mispronunciation of the original token. In other cases, ener-
getic masking was likely to be the principal factor. To further
explore the relative frequencies of these and other types ofcon-
fusion, a second experiment asked listeners to identify the161
majority confusions discovered in expt. 1 with the speech and
noise signals undergoing various types of manipulation.

3.1. Experiment 2: Speech/noise manipulations

Five types of manipulations were performed. Inclean, words
were presented without noise in order to identify mispronun-
ciations. Words were alsotime-shiftedin 7 steps relative to
the noise to determine the extent to which the confusion relied
on a precise alignment of speech and noise elements. Simi-
larly, words weref0-shiftedusing STRAIGHT resynthesis [13]
in 5 steps to identify those confusions which might have an ori-
gin in incorrect grouping of harmonic components. Two fur-
ther sets of conditions examined the possibility that confusions
could be predicted solely on the basis of energetic masking.
Theglimpsingmanipulation applied a model of energetic mask-
ing [7] to determine those spectro-temporal regions of the word
most likely to survive the noise. These regions were then resyn-
thesised. In theSNR-shiftedconditions the original signal-to-
noise ratio was altered, both up and down. In the former case,
the goal was to reveal more of the target word. The purpose of
a decreased SNR was motivated by the finding that listeners are
able to exploit differences in level to separate target and back-
ground [14]. On the other hand, a decrease in SNR might also
remove a majority confusion by decreasing audibility, in which
case listener responses should show less consistency.

In all, applying these manipulations to the majority con-
fusions discovered in the first experiment resulted in 17 new
blocks (table 5) each containing 161 stimuli which were identi-
fied by 9 listeners. Note that two of the conditions (0 ms time-
shift and a F0 shift factor of 1.0) were replications of the earlier
experiment, designed to test the robustness of majority confu-
sions. The quiet condition was presented last to prevent listeners
hearing clear exemplars of the tokens at an earlier stage.

Table 5:Experimental manipulations of majority confusions.

manipulation values

clean
glimpsing

time-shifted -160,-80,-14,-20,0,20,160 ms
F0-shifted factors: 0.8,1.0,1.1,1.2,1.5
SNR-shift -5,+5,+10 dB
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Figure 2:Effect of manipulation for “wall” in babble noise. The
percentage listener agreement for both the original confusion
and for the correct response are indicated. The horizontal lines
show the agreement level for the original confusion.

3.2. Results

Responses were analysed by examining the number of listeners
agreeing with the original confusion (from experiment 1) and
the number identifying the correct word. While many cases re-
sist a simple single-cause explanation, principal findingswere:

(i) The test-retest rate for agreements on confusions was
82%. That is, while the agreement rate for some confusions was
maintained (or increased), overall there was a fall in agreement.
This may have been due to learning: the same set of words was
used in each of the 17 conditions and while the quiet condition
was presented last, it is likely that listeners learned about the
words during the test, creating a closed-set task. Alternatively,
since word order was different in experiment 2, this would sug-
gest that some of the confusions in the first experiment came
from semantic priming by recently-presented words.

(ii) 10% of items were misidentified due to ambiguous or
incorrect pronunciation. In fact, 6% agreed with the original
confusion but the other 4% revealed the original confusion only
in noise, suggesting that the original ambiguous pronunciation
was supplemented by a further reaction in noise.

(iii) Listeners identified the original confusion when resyn-
thesised from glimpses on 24% of occasions. That is, pure ener-
getic masking (EM) of parts of the target word was responsible
for the observed confusion in those cases.

(iv) Overall, changes in fundamental frequency of the target
word made little difference to agreements. However, in 18% of
individual cases there was a clear F0 ’tuning’ effect, with small
changes in F0 resulting in a change of the word perceived.

(v) Reports of the original confusion fell off slowly with
target-background asynchrony, with about half of all confusions
maintained even for the largest shifts of± 160 ms. However, in
specific cases even the smallest shifts of± 20 ms could produce
a significant change in majority response.

(vi) SNR shifts of± 5 dB had little effect. Only the +10 dB
improvement tended to cause a significant release from mask-
ing, though not to the levels seen in the glimpsing condition.

As an example, consider the case of [wall + babble6 →

small] from the Introduction. Here, resynthesis from glimps-
ing did not produce any correct responses (indicating that EM
was not the sole cause of the confusion) and also did not re-
sult in any reports of the original confusion. Instead, listeners



tended to hear “mall” from the glimpses, suggesting that labi-
ality and voicing were not masked. It appears that /s/ from the
background was recruited. Fig. 2 illustrates the results ofother
manipulations to the speech and noise for the “wall” example.
Here, we see an effect of changes in F0: as F0 of the target word
is increased, there are more reports of the correct interpretation.
Increasing SNR by +5 dB retains the original confusion. In the
case of time-shifting, the striking finding here is the sharp’tun-
ing’: at even quite small asynchronies the agreement with the
original confusion is substantially weakened.

3.3. Discussion

Traditionally, the reduced intelligibility of speech in adverse
conditions has been explained by the concept of masking, more
recently refined into energetic (EM) and informational mask-
ing (IM) (e.g. [14]). EM concerns the loss of audibility of
signal components due to the interaction of the target with an
unwanted signal at the level of the auditory periphery whileIM
caters for everything else which reduces intelligibility (e.g. mis-
allocation of signal components to target/background, cognitive
load in attending to more than one source, interference fromna-
tive language). One intriguing outcome of the current studyis
finding (iii) of section 3.2 that EM alone accounted for a minor-
ity of robust confusions. Other confusions would currentlybe
categorised as resulting from IM.

Masking may not be the most appropriate way to interpret
speech in noise. An alternative view is that speech and noisere-
act in ways whose outcome depends on many factors, perhaps
operating in sequence. Consider first that while noise is gen-
erally held to mask speech, the noise is itself masked in parts
by energetic speech components. At an early stage, then, the
time-frequency plane is fragmented into glimpsed and poten-
tially audible components of both speechand noise. If speech
components can be detected and then integrated into an ongo-
ing utterance hypothesis, under the action of prior knowledge of
words, then robust recognition is possible. However, thereare
many ways in which confusions can arise. The temporal, har-
monic and energetic relationships among components such as
patches of frication, formant transition or voice bars may well
suggest groupings in which speech components are detached
and allocated to the background noise, or background compo-
nents attach themselves to the target. The weakening (e.g. by
energetic masking) of a bond between parts of the original target
speech paves the way for recruitment of background elements.

4. Towards a large-scale confusions corpus
The number of listeners,L, required to collect a corpus ofN
consistent confusions is given by (1)

L =
k.N

m.dagree

(1)

wherek is the number of listeners required to screen each token,
dagree is the discovery rate for a desired strength of agreement
between listeners andm is the number of tokens each listener
is presented with. In the current study,k = 10, m = 2400

andd ranged fromd60 = 0.067 to d100 = 0.0038, although
after accounting for lack of test-retest consistency and poor pro-
nunciations,d60 ≈ 0.05 andd100 ≈ 0.0027. A target corpus
size ofN = 10

3 would require more than103 listeners each
screening a large number of tokens. With adaptive token prun-
ing techniques,k could be reduced somewhat, especially when
high-levels of agreement are desired.

However, the scale of the task is well-suited to internet-
based perception testing, with a reducedm and increasedk
to cater for uncontrolled variability. A large population test
acts as an initial filter to generate confusion candidates tobe
assessed under formal listening conditions. A pilot test at
http://www.thebiglisten.org.ukwith m = 50 pre-
sentations andk = 20 − 80 listeners/token (after filtering for
age, native-language, hearing impairment, ambient conditions
and listening equipment) attracted responses from more than
2000 listeners and a full-scale test is planned.
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