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Abstract
The glimpsing model of speech perception in noise operates by
recognising those speech-dominant spectro-temporal regions,
or glimpses, that survive energetic masking; hence, a speech
recognition component is an integral part of the model. The
current study evaluates whether a simpler family of metrics
based solely on quantifying the amount of supra-threshold tar-
get speech available after energetic masking can account for
subjective intelligibility. The predictive power of glimpse-based
metrics is compared for natural, processed and synthetic speech
in the presence of stationary and fluctuating maskers. These
metrics are raw glimpse proportion, extended glimpse propor-
tion, and two further refinements: one, FMGP, incorporates a
component simulating the effect of forward masking; the other,
HEGP, selects speech-dominant spectro-temporal regions with
above-average energy on the noisy speech. The metrics are
compared alongside a state-of-the-art non-glimpsing metric, us-
ing three large datasets of listener scores. Both FMGP and
HEGP equal or improve upon the predictive power of the raw
and extended metrics, with across-masker correlations rang-
ing from 0.81–0.92; both metrics equal or exceed the state-
of-the-art metric in all conditions. These outcomes suggests
that easily-computed measures of unmasked, supra-threshold
speech can serve as robust proxies for intelligibility across a
range of speech styles and additive masking conditions.
Index Terms: speech intelligibility, modified speech, noise, ob-
jective intelligibility measures, intelligibility enhancement

1. Introduction
Speech communication often takes place under non-ideal listen-
ing conditions in which background noise and imperfect trans-
mission channels act to lower intelligibility. Predicting the ef-
fect of adverse conditions on speech reception is an important
component in many applications, such as the design of acoustic
spaces and communication devices [1], the development of al-
gorithms for speech modification and enhancement [2], and es-
timating intelligibility for cochlear implant users [3]. Objective
intelligibility metrics (OIMs) have been investigated for nearly
a century [4], with a recent focus on improving estimates in the
presence of temporally-modulated maskers (e.g., [5, 6]) and for
both modified [7] and synthetic speech [8].

Many OIMs have been motivated by the notion that intelli-
gibility is closely related to the quantity of audible speech com-
ponents that survive energetic masking in the auditory periph-
ery. Early studies measuring speech intelligibility [4, 9] sug-
gested that intelligibility is proportional to the amount of audi-
ble speech information in a number of frequency bands, leading

to the articulation index [10] and the subsequent Speech Intelli-
gibility Index (SII) [11]. More recently, the concept of masked
audibility has been extended to the spectro-temporal domain in
metrics such as the extended SII [5] which combines short-term
SII estimates across time frames to account for the effect of
fluctuating maskers.

The glimpsing model of speech perception in noise [6] also
takes as its starting point the idea that masked audibility is the
primary determinant of intelligibility. However, the glimpsing
model was not designed as an OIM: rather than predicting av-
erage intelligibility, it provides an end-to-end model of speech
processing in noise, coupling an initial stage simulating ener-
getic masking with a subsequent speech recognition compo-
nent that matches those spectro-temporal regions, or ‘glimpses’,
deemed to have survived masking, to models for speech, using
missing data techniques [12].

In principle, the glimpsing model could serve as an OIM
by direct measurement of the number of items (e.g., phonemes,
words) recognised correctly in the presence of noise, and subse-
quently correlating this figure with listeners’ scores in masked
conditions. However, the presence of the ASR component in
the glimpsing model complicates its deployment as a practical
intelligibility prediction metric: the construction of a recog-
niser for each task is time-consuming and requires the acqui-
sition of training data; the recogniser may not perform at a
level equivalent to listeners; intelligibility measurement using
ASR is computationally-complex, precluding its use as an ob-
jective measure in closed-loop optimisation frameworks where
the metric may be required to be evaluated many times. For
these reasons, a number of studies (e.g., [13, 7, 14, 15, 16, 17])
have adopted the output of the initial stage of the glimpsing
model – known as the ‘glimpse proportion’ (GP) – as a proxy
for intelligibility. A recent study demonstrated that an extended
GP-based metric (GPext) is capable of making reasonable intel-
ligibility predictions [18], although its performance fell some
way short of the best-performing metrics.

The purpose of the current study is to evaluate two alter-
native extensions to the GPext metric. One extension, FMGP,
described in section 2.3, incorporates a model of forward mask-
ing. The other, HEGP (section 2.4), explores the use of a
high-energy subset of glimpses. The new metrics are eval-
uated alongside the raw and extended GP (reviewed in sec-
tions 2.1 and 2.2), together with a high-performing reference
metric, CPD [19], using three large datasets of subjective intel-
ligibility results from listeners exposed to speech in noise, con-
taining plain, modified and synthetic speech styles (section 3).
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2. Glimpsing metrics
2.1. Glimpse proportion – GP

The glimpse proportion (GP) [6] is defined as the proportion of
time-frequency regions in modelled auditory excitation patterns
whose local SNR exceeds a threshold α dB:

GP =
1

TF

F∑
f=1

T∑
t=1

H[Sf (t) > (Nf (t) + α) ] (1)

T and F are the number of time frames and frequency chan-
nels, Sf (t) and Nf (t) denote spectro-temporal excitation pat-
terns (STEPs) for speech and noise at time t and frequency f ,
and H[·] is the unit step function which counts the number of
‘glimpses’ meeting the local masked audibility criterion α (set
to 3 dB, a value which produced a high listener-model corre-
lation in [6]). STEP computation proceeds by passing speech
s(t) and masker n(t) waveforms independently through a 34-
channel gammatone filterbank [20]. Filters are linearly spaced
on the equivalent rectangle bandwidth scale [21] with centre
frequencies from 100 to 7500 Hz. The instantaneous Hilbert
envelope ef (t) at the output of each filter f is computed and
smoothed by a leaky integrator with an 8ms time constant [22],
followed by downsampling to 100 Hz and log-compression.

2.2. Extended glimpse proportion – GPext

GPext [18] augments GP by (1) ensuring potential glimpses are
above the threshold of audibility; (2) accommodating speech
rate changes; and (3) applying a compressive transformation
and converting to an index in the range 0-1.

Threshold of audibility. To prevent the inclusion of inaudible
speech-dominant regions, a hearing threshold is incorporated
into the glimpsing metric. Speech and masker signals at the
output of each gammatone filter are multiplied by a frequency-
dependent gain Wf defined by [23]. The glimpsing criterion is
then adjusted (Eq. 2) to constrain potential glimpses to exceed
both the local SNR α and the hearing level (HL; set to 25 dB).

WfSf (t) > max(WfNf (t) + α,HL) (2)

Speech rate change compensation. Speeded-up or time-
compressed speech can lead to intelligibility losses (e.g., [24,
25, 26]). Evidence for intelligibility gains from slower speech
is mixed, with some studies finding benefits (e.g., [27, 28]) and
others suggesting a lack of effect (e.g. [29, 30]). To model these
durational effects, GP is weighted by a measure of speech rate,
1/λ, where λ is the speed-up factor, defined as the ratio of the
duration of the unmodified speech compared to that of the mod-
ified speech. Note that since this weighting could potentially
lead to a GP exceeding 1, the weighted value is capped at unity.

Compressive transformation to OIM index. This stage ac-
counts for the finding that listeners’ performance reaches ceil-
ing levels for a GP well below unity [13]. The quasi-log func-
tion v defined in Eq. 3 is applied to compress glimpse values.
The offset δ is set to a small value to prevent log of zero is-
sues in situations where no glimpses survive; the expression in
the denominator restricts the metric to the range [0-1]. Other
compressive functions of the form xγ produce similar results.

v(x) =
log(1 + x/δ)

log(1 + 1/δ)
, δ = 0.01 (3)

The GPext metric is summarised in Eq. 4

GPext =v

[
min

(
1

λ

1

TF

F∑
f=1

T∑
t=1

H[WfSf (t) >

max(WfNf (t) + α,HL)], 1

)] (4)

2.3. GPext with forward masking – FMGP

GP and GPext model simultaneous masking, but do not take into
non-simultaneous masking, of which forward masking (FM) is
the most important form for listeners [31, 32, 33]. FM reduces
the sensitivity of the auditory response following an intense
component in a given frequency region. Thus, earlier portions
of a given signal can affect the same signal in later epochs, and
other signals (including noise) can mask each other. Incorporat-
ing a forward masking model into an intelligibility metric can
improve its predictive power (as in [5]).

Here, an inner hair cell (IHC) model [34] was used to
simulate the FM effect. The neural response to a stationary
sound at the level of the auditory nerve shows a distinct on-
set followed by a decay in activity, and is thought to provide
in part the neurophysiological basis for psychophysical forward
masking. The simulated IHC output in frequency band f , de-

noted IHC
[s+n]
f (t), is computed from the mixture waveform

[s+n](t) following envelope extraction. Subsequently, all IHC
peaks are identified, with time-locations denoted peaksf . To
identify and remove ‘masked glimpses’ of the speech target, the
following rule is applied: for each peak location in peaksf ,
if there is a putative glimpse (defined by Eq. 2) at that time,
then this is treated as a non-masked glimpse. Thus: (a) if the
peak coincides with the onset of a glimpse, the entire glimpse is
treated as non-masked; (b) if the peak occurs some way through
a glimpse, only the part of the glimpse subsequent to the peak
is retained; and (c) if no part of the glimpse contains a peak,
the glimpse is regarded as masked. The glimpse definition for
FMGP then becomes, by extension of Eq. 2:

[WfSf (t) > max(WfNf (t) + α,HL)] ∧ [¬FMf (t)] (5)

where the expression FMf (t) indicates that a glimpse in chan-
nel f at time frame t is masked according to the aforementioned
rule. The FMGP metric simply replaces the input to H[·] in
Eq. 4 with the above expression Eq. 5.
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Figure 1: An illustration of the forward masking effect in a sin-
gle frequency band in the presence of a stationary (SSN, left)
and a fluctuating masker (CS, right). For the purposes of illus-
tration the sampling rate in this figure has been reduced 7-fold.
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Fig. 1 illustrates the forward masking effect. The upper
panels show the response to speech and masker in a single fre-
quency band prior to the IHC stage, represented by Sf and Nf

respectively. Epochs where the response to speech exceeds that
to the masker (i.e., without the FM component) by a certain
amount α are shown in the middle panels, superimposed upon
the IHC output in response to the mixture of speech and noise,

IHC
[s+n]
f . The lower panel indicates the glimpses that re-

main after FM, demonstrating a greater reduction for competing
speech (CS; right) than in speech-shaped noise (SSN; left). This
is due to the increased likelihood of a target speech glimpse be-
ing preceded by a masker-related peak in the IHC output, which
acts to mask any IHC activity peak related to the target signal.
An example can be seen towards the end of the middle panel
(right) of Fig. 1, where a potential speech glimpse is masked
due to the presence of the preceding masker peak.

2.4. GPext with high-energy glimpses – HEGP

The study of GPext in [18] found that even when SNRs are ad-
justed to equalise intelligibility, more glimpses survive a com-
peting speech (CS) masker than a stationary speech-shaped
masker (SSN). This outcome suggests that some of the extra
glimpses in CS may not fully contribute to the intelligibility
gain, and that identifying those extra glimpses might increase
the predictive performance of a glimpsing metric.

Motivated by a desire to isolate the effects of additive noise,
peak clipping, and centre clipping, the Coherence Speech Intel-
ligibility Index (CSII) [35] classifies speech frames into three
levels according to the RMS energy of the frame. Since vowels
are mostly high energy sounds, vowel-consonant transitions are
neither high nor low in energy, and many consonants are low
in energy, these speech components can be affected by noise to
different degrees [35]. CSII uses a linearly-weighted sum of the
mean SIIs at the three levels. The CPD metric [19] adopts a
similar procedure but uses only the high-energy frames.

Inspired by this idea, the current study investigated the ef-
fect of selecting only high energy glimpses. As a starting point,
time-frequency bins which constitute glimpses in the speech-
plus-noise mixture are categorised according to the relative en-
ergy Y ′ of the STEP of a glimpsed region in the noisy speech
Yf (t) and the mean Ȳf across all time frames in channel f :

Y ′
f (t) = Wf (Yf (t)− Ȳf ) (6)

According to the three-level criteria used in CSII, high-
energy time-frequency bins are those in which Y ′ is 0 dB or
above, those between -10 and 0 dB fall into the mid-energy
level, while low-energy glimpses have Y ′ between -30 to -10
dB. As illustrated in Fig. 2, glimpses are available at all three
energy levels across time and frequency in CS, while almost all
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Figure 2: Glimpses in the presence of CS at -14 dB SNR and
SSN at -7 dB SNR, colour-coded by energy level classification
(black: high energy; red: mid; green: low).

are high-energy glimpses in SSN, with a small number of mid-
energy glimpses at the low frequencies. Therefore, the approach
adopted here is to take into account solely the contribution of
the high-energy glimpses to intelligibility, replacing the input
toH[·] in Eq. 4 by Eq. 7:

[WfSf (t) > (WfNf (t)+α)]∧[WfYf (t) > max(Wf Ȳf , HL)]
(7)

3. Evaluation
The ability of the four glimpse-based metrics – GP, GPext,
FMGP and HEGP – to predict listeners’ scores in sentence-
based tasks was evaluated. Alongside the glimpse-based met-
rics, the performance of the CPD approach [19], the best-
performing metric in a recent comparative evaluation [18], is
also reported. The current evaluation uses the datasets of the
evaluation in [18]. This consists of three sets of listener data
which total over 396 experimental conditions, as summarised
in Table 1. The three datasets, denoted NATURAL [7], TTS [8]
and HURRICANE [36, 37], contain plain (i.e., natural, unmodi-
fied) speech, natural speech with algorithmic modifications ap-
plied, natural Lombard speech, and synthetic speech, with and
without additional modifications. In each case listeners iden-
tified keywords in sentences presented in a range of stationary
and fluctuating additive noise maskers.

Table 1: Composition of the evaluation datasets. SMN: speech-
modulated noise; BAB: speech babble. The number of each
style or speech rate condition is indicated in parentheses.

NATURAL TTS HURRICANE

Styles plain (1) synthetic (1) plain (2)
modified (5) modified Lombard (1)

synthetic (4) modified (19)
synthetic (8)

Sentences Matrix Matrix Harvard

Maskers SSN, SMN SSN, BAB SSN, CS
Car, HighFreq

Conditions 24 192 180

Listeners 24 88 314

Speech rate none faster (16) slower (72)
changes slower (32)

Subjective intelligibility was measured as the percentage
of keywords identified correctly by listeners in each condition.
Predictive performance was evaluated using the Pearson cor-
relation coefficient ρ between subjective intelligibility and the
output of the metrics, along with the error of the standard devi-

ation of listener scores, defined as σe = σd

√
1− ρ2, where σd

is the standard deviation of listener scores per condition.

Tables 2-4 show correlations between measured (i.e. lis-
tener) and predicted intelligibility for each dataset. Consider-
ing overall across-masker correlations, while raw GP produces
similar correlations to CPD for the NATURAL and TTS datasets,
those for the HURRICANE dataset are significantly poorer. The
extended GP metric GPext leads to clear improvements for each
dataset, and the two OIMs proposed here lead to further in-
creases in correlation, substantially so for the HURRICANE con-
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Table 2: Listener-metric correlations (ρ; σe in parentheses) for
the NATURAL dataset. Metrics with the highest correlations (in-
cluding those that are statistically-equivalent) are highlighted.

Overall SSN SMN

GP 0.79 (0.10) 0.79 0.88
GPext 0.89 (0.07) 0.93 0.94
FMGP 0.90 (0.07) 0.92 0.93
HEGP 0.92 (0.07) 0.92 0.89
CPD 0.79 (0.10) 0.79 0.79

Table 3: Correlations for the TTS dataset.

Overall SSN BAB Car HighFreq

GP 0.71 (0.17) 0.79 0.81 0.78 0.83
GPext 0.78 (0.15) 0.89 0.88 0.91 0.85
FMGP 0.81 (0.14) 0.91 0.89 0.91 0.86
HEGP 0.83 (0.13) 0.92 0.93 0.92 0.88
CPD 0.73 (0.17) 0.73 0.76 0.65 0.86

Table 4: Correlations for the HURRICANE dataset.

Overall SSN CS

GP 0.53 (0.23) 0.84 0.83
GPext 0.66 (0.20) 0.90 0.85
FMGP 0.71 (0.19) 0.90 0.85
HEGP 0.87 (0.13) 0.90 0.86
CPD 0.83 (0.15) 0.86 0.78

ditions. Statistical comparisons using chi-squared tests on Z-
transformed scores demonstrate that for the NATURAL and TTS

datasets, GPext, FMGP and HEGP are statistically-equivalent,
all with higher correlations than GP and CPD [all p < .05].
For the HURRICANE dataset, HEGP and CPD are equivalent
[Z = 1.57, p = .12], higher than the remaining metrics
[all p < .001]. Overall, the use of high energy glimpses pro-
duces the best predictions of any metric tested, for all datasets.

Fig. 3 examines in more detail the subjective-objective re-
lationship for FMGP and HEGP, coded by masker type. The
higher correlations resulting from HEGP [Z = 5.61, p < .001]
come from improvements in across- rather than within-masker
correlation. This is especially evident for the HURRICANE

dataset where the two maskers are almost perfectly-separated by
the FMGP metric. Here, within-masker correlations are identi-
cal for FMGP and HEGP, but FMGP overestimates the intelli-
gibility of speech in the CS background.

4. Discussion
The current study was motivated by the question of how well
metrics based solely on glimpse proportion – the quantity of tar-
get speech escaping energetic masking – might serve as a proxy
for intelligibility, divorced from the later ASR stage of the full
glimpsing model [6]. The outcome suggests that glimpse-based
metrics are capable of making robust across-masker predictions
of the average intelligibility of a range of speech styles in the
presence of stationary and fluctuating noise.

While the refinements inherent in GPext lead to improve-
ments over GP, metrics incorporating simulations of forward
masking (FMGP) or making use of high-energy glimpses only
(HEGP) produce further useful gains. HEGP in particular
has its greatest impact on across-masker predictions, strikingly
for the HURRICANE data where the stationary and competing
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Figure 3: Subjective intelligibility versus predictions by FMGP
(left) and HEGP (right) for the three datasets, coded by masker
type. The best linear fit is also shown.

speech noises are brought into line. While the use of high-
energy glimpses in HEGP is inspired by CSII [35] and CPD
[19], there are several differences in the way such regions are
selected and used: HEGP uses time-frequency pixels rather than
time frames; the reference energy level in HEGP is frequency-
dependent; in HEGP classification is performed on the noisy
speech signal. These differences are strongly related to the
glimpsing concept at the core of HEGP.

The incorporation of a forward-masking component into
the GPext metric has a modest impact on predictive power.
In practice, relatively few glimpses are removed by the non-
simultaneous masking process, since the masking level starts to
decay logarithmically after masker offset, lasting up to 200 ms
[31, 32, 33].

It is worth noting that OIMs based solely on energetic
masking cannot account for more central informational masking
effects [38, 39, 40]. Nevertheless, the ability of easily-computed
glimpse-based metrics to quantify the effects on intelligibility of
both natural and synthetic speech of a range of maskers makes
them a potentially useful tool in applications such as the devel-
opment of speech modification algorithms designed to enhance
speech reception in adverse listening conditions.
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